Print
2025 №02 (04) DOI of Article
10.37434/tpwj2025.02.05
2025 №02 (06)


The Paton Welding Journal, 2025, #2, 30-37 pages

Refining metallurgical silicon

G.G. Didikin, V.O. Osokin, Ya.A. Stelmakh

E.O. Paton Electric Welding Institute of the NASU. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: didikin@paton-icebt.kiev.ua

Abstract
The review presents modern technologies used to refine metallurgical silicon to a purity of 5‒6 N for photovoltaic cells. Refining of silicon is performed using an intermediate metal Al to capture silicon impurities after its fusion with Si. The removal of C, Ca, Fe, Ti, P from the Al-Si melt with Si is shown. After a two-time directional crystallization of the melt, Si of a purity acceptable for use in photovoltaic technologies was produced. Positive results were obtained during plasma remelting with the simultaneous application of gases in the core: Ar‒H2, H2‒H2O, O2, or H2 in an Ar-based plasma. The electromagnetic stirring of the bath provides accelerated mass transfer in the liquid compared to the reaction rate on the surface with control of the surface shape. Removal of metal impurities Na, Ca, Ba, and Al up to 90‒100 % was achieved using 30 % H2 in Ar plasma. Carbon removal was observed using oxygen in the plasma at temperatures above 1530 °C. It was found that H2 is more effective in plasma than O2. A constant voltage in the liquid bath increases the refining efficiency by 10 times. The best results in removing boron from molten silicon were obtained by blowing the melt with humidified argon or water vapor. The resulting silicon product had favorable electronic properties. It is noted that during electron beam remelting, it is possible to purify silicon from elements with high vapor pressure and perform oxidative refining from boron impurities using a mixture of oxygen and inert gas with application of a cold hearth and zone recrystallization. In the process of EBCZM, after increasing the vacuum depth, the amount of oxygen and phosphorus in silicon can be reduced by a factor of 10.
Keywords: metallurgical silicon, purification, vacuum and oxidative refining, plasma remelting, electron beam melting, silicon, solar grades, impurity elements

Received: 10.06.2024
Received in revised form: 31.10.2024
Accepted: 16.01.2025

References

1. Despoto, E., El Gammal, A., Fontaine, B. et al. (2010) Global market outlook for photovoltaics until 2014, European Photovoltaic Industry Association, Brussels, 2010). https://www.academia.edu/98819863/High_Temperature_Refining_of_Metallurgical_Grade_Silicon_A_Review?uc-sb-sw=98763071
2. Johnston, M.D., Khajavi, L.T., Li, M. et al. (2012) High-temperature refining of metallurgical grade silicon: A review. JOM, 64, 935. https://doi.org/10.1007/s11837-012-0384-3
3. Obinata, I., Komatsu, N. (1957) Thermodynamics of phosphorus in solvent refining of silicon using ferrosilicon alloys. Sci. Rep. RITU, A-9, 118-30. https://ouci.dntb.gov.ua/en/works/ldBWBkY7/
4. Ciftja, A., Engh, T.A., Tangstad M. (2008) Refining and recycling of silicon: A review. NTNU, Trondheim. https://www.researchgate.net/publication/267552614_Refining_and_Recycling_of_Silicon_A_Review
5. Kotval, P.S., Strock, H.B. (1978) US Pat. 4,124,410, Union Carbide Corporation.
6. Kotval, P.S., Strock, H.B. (1980. a) US Pat. 4,193,974, Union Carbide Corporation.
7. Kotval, P.S., Strock, H.B. (1980. b) US Pat. 4,193,975, Union Carbide Corporation.
8. Kotval, P.S., Strock, H.B. (1980. c) US Pat. 4,195,067, Union Carbide Corporation.
9. Gumaste, J., Mohanty, B., Galgali, R. et al. (1987) Solvent refining of metallurgical grade silicon. Sol. Energy Mater., 16, 289-96. https://doi.org/10.1016/0165-1633(87)90077-3
10. Yoshikawa, T., Morita, K. (2005) In: EPD Congress on High-Temperature Refining of Metallurgical-Grade Silicon (TMS, Warrendale, PA), 549-58. https://tspace.library.utoronto.ca/bitstream/1807/93627/1/High%20Temp_TSpace.pdf
11. Bathey, B., Cretella, M.C. (1982) Vacuum refining of molten silicon. J. Mater. Sci., 17, 3077-96. https://doi.org/10.1007/BF01203469
12. Yoshikawa, T., Arimura, K., Morita, K. (2005) Thermodynamics of impurities removal from Si-Fe alloy. Metall. Mater. Transact. B, 36B(6), 837-42. https://doi.org/10.1007/s11663-005-0085-1
13. Theuerer, H.C. (1956) Boron removal from silicon by humidified gases. J. Metals, 8, 1316-19. https://doi.org/10.1007/s40553-014-0007-8
14. Morvan, D., Amouroux, J., Charpin, M.C., Lauvrey, H. (1983) High-temperature refining of metallurgical-grade silicon: A review. Rev. Phys. Appl., 18(4), 239-51. https://doi.org/10.1051/rphysap:01983001804023900
15. Suzuki, K., Kumagai, T., Sano, N. (1992) ISIJ Int., 32(5), 630-634. https://link.springer.com/article/10.1007/BF02662772 https://doi.org/10.2355/isijinternational.32.630
16. Ikeda, T., Maeda, M. (1996) High-temperature refining of metallurgical grade silicon. Mater. Transact., JIM, 37(5), 983-87. https://tspace.library.utoronto.ca/bitstream/1807/93627/1/High%20Temp_TSpace.pdf https://doi.org/10.2320/matertrans1989.37.983
17. Nakamura, N., Baba, H., Sakaguchi, Y., Kato, Y. (2004) Boron removal from silicon by humidified gases. Mater. Transact., 45(3), 858-64. https://link.springer.com/article/10.1007/s11663-005-0085-1 https://doi.org/10.2320/matertrans.45.858
18. Suzuki, K., Kumagai, T., Sano, N. (1992) Thermodynamics of boron in a silicon melt. ISIJ Int., 32(5), 630-34. https://link.springer.com/article/10.1007/s11663-012-9671-1 https://doi.org/10.2355/isijinternational.32.630
19. Lynch, D. (2009) Winning the global race for solar silicon. JOM, 61(11), 41-48. https://doi.org/10.1007/s11837-009-0166-8
20. Delannoy, Y., Alemany, C., Li, K.-I. et al. (2002) Plasma-refining process to provide solar-grade silicon. Sol. Energy Mater. Sol. Cells, 72, 69-75. https://www.academia.edu/6146609/Plasma_refining_process_to_provide_solar_grade_silicon https://doi.org/10.1016/S0927-0248(01)00151-9
21. Alemany, C., Trassy, C., Pateyron, B. et al. (2012) Processes for upgrading metallurgical grade silicon to solar grade silicon. Sol. Energy Mater. Sol. Cells, 72, 41-48. https://doi.org/10.1016/j.egypro.2012.03.011
22. Tsao, S., Lian, S.-S. (2005) Boron removal from silicon by humidified gases. Mat. Sci. Forum, 475-479, 2595-98. https://doi.org/10.1007/s40553-014-0007-8
23. Rousseau, S., Benmansour, M., Morvan, D., Amouroux, J. (2007) Boron removal from silicon by humidified gases. Sol. Energy Mater. Sol. Cells, 91(20), 1906-15. https://doi.org/10.1007/s40553-014-0007-8
24. Benmansour, M., Rousseau, S., Morvan, D. (2008) High-temperature refining of metallurgical-grade silicon: A review. Surf. Coat. Technol., 203, 839-43. https://doi.org/10.1016/j.surfcoat.2008.05.032
25. Moon, D.V., Lee, H.M, Kim, B.K. (2010) Boron removal from UMG-Si by hydrid melting utilizing Steam plasma torch and EMCM. In: Proc. of Conf. on Photovoltaic Spesialist, 35th IEEE, Honolulu, 20-25 June 2010, 002194-002197. https://doi.org/10.1109/PVSC.2010.5616111
26. Nakamura, N., Baba, H., Sakaquchi, Ya., Kato, Yo. (2004) Boron removal in molten silicon by a steam-faded plasma melting method. Materials Transact., 45(3), 858-864. https://doi.org/10.2320/matertrans.45.858
27. Shapovalov, V.A., Sheiko, I.V., Nikitenko, Yu.A. et al. (2012) Induction melting and refining of silicon in a sectional solidification mould. Advances in Electrometallurgy, 4, 259-263.
28. Grigorenko, G.M., Shapovalov, V.A., Sheiko, I.V. et al. (2013) Refining of silicon in levitation melting. Advances in Electrometallurgy, 1, 40-45.
29. Fogel, A.A. (1979) Induction method of liquid metal containment in levitation. Leningrad, Mashinostroenie [in Russian].
30. Grigorenko, G.M., Sheiko, I.V. (2006) Induction melting of metals in cold crucibles and cooled sectional moulds. Kyiv, Stal [in Russian].
31. Future of solar photovoltaic, deployment, investment, technology, grid integration and socio-economic aspects. https://www.irena.org/publications/2019/Nov/Future-of-Solar-Photovoltaic
32. Solar power Europe, what's cool in solar: Wafers. https://www.solarpowereurope.org/whats-cool-in-solar-wafers/
33. Osokin, V.A., Shpak, P.A., Ishchenko, V.V. et al. (2008) Electron beam technology of polycrystalline silicon refining for solar energy. Metallurg, 2, 69-73 [in Russian].
34. Osokin, V.A., Panibratsky, V.A. (2010) Refining of metallurgical silicon by vacuum electron beam method. Vymiryuvalna ta Obchyslyuvalna Tekhnika v Tekhnologichnykh Protsessakh, 2, 40-47 [in Russian].
35. Osokin, V.A., Panibratsky, V.A., Shpak, P.A., Piyuk, E.L. (2011) Peculiarities of structure of high-pure silicon produced by electron beam refining of metallurgical silicon. Metallurg, 8, 82-87 [in Russian]. https://doi.org/10.1007/s11015-011-9475-6
36. Ikeda, T., Maeda, M. (1992) Purification of metallurgical silicon for solar-grade silicon by electron beam button melting. ISIJ Int., 32(5), 635-642. https://doi.org/10.2355/isijinternational.32.635
37. Suzuki, K., Sakaguchi, K., Nakagiri, T., Sano, N. (1990) Gaseous removal of phosphorus and boron from molten silicon. J. Japan Inst. Met., 54(2), 161-67. https://doi.org/10.2320/jinstmet1952.54.2_161
38. Pires, J.C.S., Braga, A.F.B., Mei, P.R. (2003) High-temperature refining of metallurgical-grade silicon: A review. Energy Mater. Sol. Cells, 79(3), 347-55. https://doi.org/10.1016/S0927-0248(02)00471-3
39. Pires, J.C.S., Otubo, J., Braga, A.F.B., Mei, P.R. (2005) The purification of metallurgical grade silicon by electron beam melting. Mat. Proc. Tech., 169(1), 16-20. https://doi.org/10.1016/j.jmatprotec.2004.03.035
40. Hanazawa, K., Yuge, N., Kato Y. (2004) Model implementation of boron removal using CaCl2-CaO-SiO2 slag system for solar-grade silicon. Mater. Transact., 45(3), 844-49. https://doi.org/10.1007/s11663-017-1105-7
41. Berezos, V.A. (2013) Electron beam refining of crystalline silicon. Advances in Electrometallurgy, 3, 188-194.
42. Berezos, V.A., Erokhin, A.G. (2009) Refining silicon by electron beam melting. Advances in Electrometallurgy, 3, 174-177.
43. Asnis, E.A., Piskun, N.V., Statkevich I.I. (2011) Purification of silicon to remove phonon and doping impurities in electron beam crucibleless zone melting. Advances in Electrometallurgy, 4, 215-217.
44. Paton, B.E., Asnis, E.A., Zabolotin, S.P. et al. (2003) Production of extrapure bulk semiconductor materials under space vacuum. Kosmichna Nauka i Tekhnologiya, 9(5-6), 30-32 [in Russian].
45. Pfann, B. (1970) Zone melting. Moscow, Mir [in Russian].
46. Nepomnyashchikh, A.I., Krasin, B.A., Vasilieva, I.E. et al. (2002) Multicrystalline silicon for solar energy. Materialy Elektronnoj Tekhniki, 4, 16-24 [in Russian].
47. Osokin, V.O., Stelmakh, Y.A., Kurapov, Yu.A., Shpak, P.O. (2022) Features of impurity segregation and microstructure of si ingot obtained by electron-beam purification of metallurgical grade silicon. J. of Nano- and Electronic Physics, 14(6), 06012. https://doi.org/10.21272/jnep.14(6).06012

Suggested Citation

G.G. Didikin, V.O. Osokin, Ya.A. Stelmakh (2025) Refining metallurgical silicon. The Paton Welding J., 02, 30-37.