ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА ТЕМПЕРАТУРНОГО СДВИГА δ_{1c} -КРИВОЙ И ХРУПКОВЯЗКОГО ПЕРЕХОДА КОНСТРУКЦИОННЫХ СТАЛЕЙ И СВАРНЫХ СОЕДИНЕНИЙ ПО РЕЗУЛЬТАТАМ СТАНДАРТНЫХ ИСПЫТАНИЙ

В. П. ДЯДИН, канд. техн. наук, Л. Я. ЮРКО, инж. (Ин-т электросварки им. Е. О. Патона НАН Украины)

Представлены результаты исследований характеристик вязкости разрушения по деформационному критерию наиболее широко используемых отечественных низколегированных конструкционных сталей различной толщины. Предложен подход к оценке температуры хрупковязкого перехода в зависимости от толщины исследуемого металлопроката. Выполнена экспериментальная проверка сдвига базовой деформационной δ_{1c} -кривой в зависимости от толщины металлопроката и его стандартных прочностных характеристик.

Ключевые слова: конструкционные стали, сварные соединения, ударная вязкость, образец Шарпи, характеристики трещиностойкости, плоская деформация, толщина металла, температурный сдвиг, хрупковязкий переход

Общепринятые критерии перехода от плоского напряженного состояния к плоской деформации недостаточно изучены и требуют экспериментальных подтверждений. Предложенный в работе [1] подход к возможной оценке температурного сдвига для деформационного критерия δ_{1c} в зависимости от толщины образца также не является исключением и нуждается в экспериментальной проверке.

В работе [1] было предложено нижнюю температурную границу, где можно вносить некоторые изменения при использовании деформационного критерия механики разрушения в зависимости от толщины, ограничить температурой $T_{28 \text{ Дж}}$, при которой работа разрушения ударного образца Шарпи составляет 28 Дж на нижней границе разброса. Данное ограничение представляет определенный интерес, поскольку позволяет сопоставить температурные сдвиги как по силовому, так и по деформационному критериям механики разрушения относительно единой точки, соответствующей $T_{28 \text{ Дж}}$ для стандартного ударного образца Шарпи.

Ниже приведены результаты экспериментальных исследований металла сварных соединений наиболее широко используемых низколегированных конструкционных сталей. Температурный сдвиг расчетной деформационной δ_{1c} -кривой определяли в соответствии с работой [1].

Вязкость разрушения металла шва. Рассмотрим результаты исследования характеристики трещиностойкости δ_c (δ_{1c}) металла шва, выполненного

© В. П. Дядин, Л. Я. Юрко, 2011

электродами марки AHO-TM (основной металл 09Г2С, толщина t = 40 мм).

Сварной шов выполняли за несколько проходов в X-разделку, после чего полученное сварное соединение разрезали перпендикулярно оси шва на заготовки, из которых изготовили следующие образцы для испытаний:

на трехточечный статический изгиб по ГОСТ 25.506–85 (тип 4) для определения деформационной характеристики $\delta_c(\delta_{1c})$;

на ударный изгиб (образцы Шарпи) по ГОСТ 9454-78 (тип 9);

на растяжение по ГОСТ 6996-66 (тип 2).

Образцы толщиной 35 мм для оценки характеристики δ_c и на ударный изгиб изготавливали с ориентацией надреза вдоль оси шва перпендикулярно плоскости листа. Раскрытие трещины δ_c определяли по MP-170-85.

Согласно [1, 2] характеристику трещиностойкости δ_{1c} в условиях плоской деформации определяли по результатам стандартных механических испытаний:

$$\delta_{1c} = 0.5Aa_{v}/\sigma_{0.2},$$
 (1)

где a_v — ударная вязкость образцов Шарпи при соответствующих температурах испытания, Дж/см²; A — коэффициент корреляции (для низколегированных и низкоуглеродистых сталей в данном случае A = 0,1); $\sigma_{0,2}$ — предел текучести материала, МПа.

Образцы охлаждали жидким азотом в ванне с бензином. Температуру в процессе испытания образцов контролировали термопарой.

Механические свойства металла шва, выполненного электродами марки АНО-ТМ при $T_{\rm исn} =$ +20 (-60 °C), следующие: $\sigma_{\rm B} = 569$ (598 МПа); $\sigma_{0.2} = 428$ (455 МПа); $\delta = 30,7$ (30,0 %); $\psi = 67,7$ (67,0 %).

ACCOMMENCE

Рис. 1. Температурная зависимость ударной вязкости (минимальные значения) металла шва, выполненного электродами марки АНО-ТМ (ΔT — значение температурного сдвига по формуле (6))

Результаты испытаний металла шва представлены в табл. 1 и на рис. 1–3.

Во всем температурном интервале исследования характеристики вязкости δ_c разрушение образцов носили хрупкий и квазихрупкий характер. Хрупкое разрушение образцов до наступления общей текучести наблюдалось вплоть до –20 °С. При температуре –15 °С разрушение образца произошло в момент достижения общей текучести материала под надрезом, при этом какого-либо заметного стабильного подрастания трещины не наблюдалось, что хорошо видно на рис. 2.

В процессе определения характеристики δ_c при комнатной температуре и анализе поверхности излома образца отмечено незначительное стабильное подрастание трещины на глубину порядка 0,4...0,6 мм, после чего наступал нестабильный рост трещины по квазихрупкому механизму (рис. 2). Падения нагрузки в процессе стабильного роста трещины на диаграммах нагружения не наблюдалось.

При построении расчетной кривой, показанной на рис. 3, для определения температурного сдвига базовой кривой δ_{1c} воспользуемся минимальными значениями удельной ударной вязкости образцов Шарпи исследуемого сварного соединения. На

Таблица 1. Характеристики трещиностойкости δ_c сварного шва, выполненного электродами АНО-ТМ, при трехточечном изгибе образца толщиной 35 мм

<i>Т</i> _{исп} , ^о С	δ _{<i>с</i>} , мм	Возможное стабильное подрастание трещины, мм
-60	0,024	
-36	0,044	
-23	0,078	
-15	0,139	_
+20	0,266	До 0,4
+20	0,323	До 0,6

Рис. 2. Поверхность излома исследуемых образцов на трехточечный изгиб при разных температурах

кривой находим температуру, соответствующую значению 35 Дж/см² (в данном случае –23 °С) (рис. 1). По линейной экстраполяции определяем предел текучести $\sigma_{0,2}$ и временное сопротивление $\sigma_{\rm B}$ сварного соединения, соответствующие данной температуре (441 и 583 МПа соответственно).

Использовав зависимость из работы [3] между расчетным значением деформационного упрочнения $n^{\rm p}$ и прочностными характеристиками материала $\sigma_{0,2}$, $\sigma_{\rm B}$

$$n^{\rm p} = -0.18 + 0.22\sigma_{\rm g}/\sigma_{0.2},\tag{2}$$

можно также найти расчетное значение n^p при температуре –23 °C ($n^p = 0,11$).

Если известна деформация $\varepsilon_{\rm B}$ в точке потери пластической устойчивости материала [4], значение деформационного упрочнения *n* можно вычислить более точно по формуле

$$n = \varepsilon_{\rm p} / (1 + \varepsilon_{\rm p}). \tag{3}$$

Согласно работам [1, 5] значение характеристики δ_c выражается в виде функции от *n*, β , α и δ_{1c} :

$$\delta_c = f(\beta(t))\delta_{1c},\tag{4}$$

Рис. 3. Температурная зависимость характеристик трещиностойкости металла: I — расчетная кривая δ_{1c} , вычисленная по формуле (1); 2 — условие по формуле (9); 3 — расчетная деформационная кривая $\delta_{1c}^{(l)}$ при $\Delta T = 10$ °C по формуле (7); точки — экспериментальные значения δ_{c}

CARDONIC PURCHARDER

где при t > 10 мм $f(\beta(t))$ определяется следующим выражением:

$$f(\beta(t)) = \left(\frac{2}{\sqrt{3}}\right)^{\frac{n+1}{n}} \left[1 - \alpha + \alpha^2 + \frac{(1 - 10, 24/(t + 5, 24))(1 + \alpha)}{2}\right]$$

$$\times \left\{ \frac{(1-10,24/(t+5,24))(1+\alpha)}{2} - \alpha - 1 \right\} \frac{1-n}{2n} \times (5)$$
$$\times \left\{ 1 - \frac{(1-10,24/(t+5,24))(1+\alpha) + 2\alpha}{4} \right\} / (1-\alpha)^{1/n}.$$

Принимаем для упрощения среднее значение $\alpha = 0,3$ [1, 6], для данного сварного соединения при температуре –23 °C $f(\beta(t)) = 1,55$.

Учитывая, что при удельной работе разрушения образца Шарпи 35 Дж/см² температура составляет всего –23 °С, изменение предела текучести исследуемого сварного соединения незначительно и им можно пренебречь. В этом случае, исходя из работы [1], связь между температурным сдвигом ΔT и базовой деформационной кривой δ_{1c} может быть выражена следующей зависимостью:

$$a_{v}^{T_{28\,Jkk}+\Delta T} \approx a_{v}^{T_{28\,Jkk}} f(\beta(t)) = 54 \, \text{Дж/cm}^{2}.$$
 (6)

Соответствующее значение ударной вязкости показано на рис. 1. Из рисунка видно, что значению ударной вязкости образца Шарпи, равному 54 Дж/см², соответствует температура -13 °C. Следовательно, температурный сдвиг ΔT составляет 10 °C.

Использовав подход, предложенный в работе [1], можно получить расчетную деформационную кривую $\delta_{1c}^{(t)}$, показанную на рис. 3, путем сдвига базовой зависимости (1) на значение ΔT :

$$\delta_{1c}^{(t)} = 0,5Aa_v^{(t)} / \sigma_{0,2}^{(t)},\tag{7}$$

где $\delta_{1c}^{(t)}$ — скорректированная характеристика вязкости разрушения δ_{1c} при условии развития сквозной трещины в конструктивном элементе толщиной t и температуре T; $a_v^{(t)}$ — ударная вязкость образца Шарпи, соответствующая скорректированной температуре T^t с учетом толщины: $T^t = T + \Delta T$; $\sigma_{0,2}^{(t)}$ — предел текучести при скорректированной температуре T^t .

Как видно из рис. 3, расчетная кривая $\delta_{lc}^{(t)}$ довольно хорошо описывает экспериментальные значения δ_c .

Следует отметить, что температура испытания ударных образцов при +20 °С еще не обеспечивает верхние значения удельной работы разрушения a_v^{max} в вязком состоянии по нижней границе

разброса. Это несколько затрудняет оценку характеристики δ_i (критическое раскрытие трещины в момент инициирования разрушения в вязком состоянии) по результатам ударных испытаний. Вместе с тем при определении характеристики δ_c при комнатной температуре и анализе поверхности излома образца было отмечено незначительное стабильное вязкое подрастание трещины на глубину порядка 0,4...0,6 мм, при этом было достигнуто состояние общей текучести материала под надрезом. С учетом данного факта и зависимости из работы [2]

$$\delta_c = \delta_i + \Delta l \frac{\sigma_{\rm B}}{\sigma_{0.2}} \frac{n}{\left(1 - n\right)^2},\tag{8}$$

где Δl — величина стабильного роста трещины, можно оценить значение δ_i в условиях общей текучести под надрезом.

Из выражений (1), (8) и данных табл. 1 следует, что $\delta_i \approx 0,2$ мм.

Тогда, с учетом зависимости (1) легко найти значение удельной работы разрушения в вязком состоянии по нижней границе разброса ($a_v^{\text{max}} = 170 \text{ Дж/см}^2$).

В то же время при использовании подходов нелинейной механики разрушения для аттестации сварных соединений ряда ответственных конструкций (глубоководные морские стационарные платформы, магистральные трубопроводы и др.) в первую очередь необходимо исключить возможность хрупкого разрушения элементов конструкции с дефектом в области номинально упругих деформаций.

Так, согласно требованиям [7], разработанным совместно с ЦНИИ КМ «Прометей», для металла сварных соединений наиболее ответственных и нагруженных элементов конструкций, значение критического раскрытия трещины δ_c должно удовлетворять условию

$$\delta_c \ge 1,35t \frac{\sigma_{0,2}}{E},\tag{9}$$

где E — модуль упругости материала, МПа; $\sigma_{0,2}$ — условный предел текучести материала, МПа.

Данный уровень при $\sigma_{0,2} = 360...450$ МПа близок к требованиям стандарта Канады [6], а также стандартов DNV и API на стали, используемые для подводных и наземных трубопроводов [8].

Приняв $\delta_c = \delta_{1c}^{(t)}$, условие (9) можно представить в следующем виде:

ADDREAD

$$\delta_{1c}^{(t)} \ge 1,35t \, \frac{\sigma_{0,2}}{E}.\tag{10}$$

Материал	σ _{0,2} , МПа	$σ_{_B}, MΠa$	n ^р по (2)	δ, %	ψ, %
Основной металл	<u>407424</u> 415	<u>585592</u> 588	0,13	<u>23,624,6</u> 24,3	<u>67,969,8</u> 69,1
Металл шва	<u>416450</u> 433	<u>540561</u> 550	0,10	<u>23,624,6</u> 24,3	<u>66,067,9</u> 66,9

Таблица 2. Механические свойства сварного соединения (T = 20 °C)

Как видно из рис. 3, полученная точка пересечения кривых 2 и 3 практически совпадает с температурой хрупковязкого перехода, где начинается стабильное подрастание трещины.

Если принять во внимание зависимость (7), то, исходя из выражения (10), требование к ударной вязкости в зависимости от толщины элемента конструкции и предела текучести материала в этом случае можно представить в виде

$$a_{v}^{(t)} \ge 0.27t \, \frac{\sigma_{0,2} \sigma_{0,2}^{(t)}}{EA},$$
 (11)

где для сохранения размерностей и состыковки формул (7), (10) пределы текучести $\sigma_{0,2}$, $\sigma_{0,2}^{(t)}$ и модуль упругости *E* выражены в мегапаскалях, толщина t — в миллиметрах.

При небольших значениях температурного сдвига ΔT в первом приближении можно допустить $\sigma_{0,2} \approx \sigma_{0,2}^{(t)}$. Тогда выражение (11) имеет вид

$$a_v^{(t)} \ge 0.27t \frac{\sigma_{0,2}^2}{EA}.$$
 (11a)

Соотношение (11а) между значениями ударной вязкости, толщиной и стандартными прочностными характеристиками существенно отличается от приведенной в работе [8] зависимости

$$a_v [Дж/см^2] \ge 0,125\sigma_{0.2} [МПа].$$
 (12)

Из выражения (11а) видно, что требование к ударной вязкости должно быть прямо пропорционально квадрату предела текучести материала и

Таблица 3. Характеристики трещиностойкости δ_c и ударной вязкости сварного соединения образца толщиной 24 мм при трехточечном изгибе в металле 3TB

<i>T</i> _{исп} , ^о С	δ _{<i>c</i>} , мм	δ_c^{\max} , мм	<i>f</i> (β(<i>t</i>)) по (5)	<i>а_v</i> , Дж/см ²
+20			2,02	122; 120; 130
-25	0,245			_
-25	_	0,670		_
-30				27; 31,32;
-40	0,045	—	_	—
-55	0,100		_	_
-60	0,065			16; 22; 27

толщине конструктивного элемента в отличие от линейной зависимости по формуле (12).

Как пример на рис. 4 представлен трехмерный график необходимого значения ударной вязкости $a_v^{(t)}$ в зависимости от толщины конструктивного элемента и предела текучести исследуемого сварного соединения, выполненного электродами марки АНО-ТМ в области хрупковязкого перехода.

Вязкость разрушения зоны термического влияния сварного соединения. Для минимизации неоднородности сварного соединения и уменьшения ошибки при оценке прочностных свойств в металле ЗТВ механические свойства металла шва выбирали близкими к основному металлу. С этой целью, а также для получения более прямой зоны охрупчивания, параллельной толщине листа, сварное соединение выполняли в К-образную разделку электродами УОНИ-13/55, основной металл — сталь марки 10ХСНД толщиной 25 мм.

Механические свойства металла шва и основного металла приведены в табл. 2.

Результаты исследований по оценке характеристики вязкости разрушения δ_c и значения ударной вязкости a_v в рассмотренном температурном интервале представлены в табл. 3 и на рис. 5, 6.

Следует отметить, что приведенные результаты исследования характеризуют трещиностой-

Рис. 4. Значения ударной вязкости по формуле (11a) сварного соединения, выполненного электродами марки АНО-ТМ, в области хрупковязкого перехода в зависимости от толщины конструктивного элемента и его прочностных свойств

ACCOMMENCE

Рис. 5. Температурная зависимость ударной вязкости околошовной зоны: точки — экспериментальные значения; кривая построена по минимальным экспериментальным значениям

кость сварного соединения в металле ЗТВ только на расстоянии 1 мм от линии сплавления.

Как и для сварного шва, исходя из минимальной температурной кривой ударной вязкости, приведенной на рис. 5, находим температуру, соответствующую значению 35 Дж/см² (в данном случае -25 °C).

За предел текучести $\sigma_{0,2}$ и временное сопротивление $\sigma_{\rm B}$ ЗТВ принимаем величины, соответствующие средним значениям основного металла и сварного шва: 424 и 569 МПа соответственно.

Рис. 6. Температурная зависимость характеристик трещиностойкости: I — расчетная кривая δ_{1c} , вычисленная по формуле (1); 2 — условие по формуле (10); 3 — расчетная деформационная кривая $\delta_{1c}^{(l)}$ при $\Delta T = 20$ °C по формуле (7); точки — экспериментальные значения δ_c

Используя формулы (2) и (5), определяем величины n^p и $f(\beta)$ ($n^p = 0,115$; $f(\beta) = 2,02$). Тогда, согласно выражению (6), $a_{v^{28} \text{Дж}}^{T} + \Delta T \approx 70 \text{ Дж/см}^2$.

Как видно из кривой на рис. 5, значению ударной вязкости образца Шарпи, равному 70 Дж/см², соответствует температура –5 °С. Следовательно, температурный сдвиг ΔT составляет 20 °С.

Это, в свою очередь, позволяет сдвинуть расчетную деформационную кривую δ_{1c} , показанную

Марка стали	<i>t</i> , мм	<i>T</i> _{исп} , ^о С	σ _т , МПа	σ _в , МПа	n ^p	δ, %	ψ, %
10ХСНД	25	+20	353,4	<u>523530</u> 526	0,147	<u>32,733,0</u> 32,6	67,9
		-30	422,7	<u>627630</u> 526	0,147	<u>33,736,6</u> <u>35,1</u>	73,3
		-60	<u>453,5488,2</u> 470,8	<u>633682</u> 668	0,133	<u>28,736,6</u> 31,6	<u>67,971,6</u> <u>69,7</u>
	37	+20	350,0	<u>544551</u> 545	0,162	32,0	75,0
		-30	<u>346,5381,6</u> 363,8	<u>561566</u> 564	0,161	<u>30,036,0</u> 33,6	72,0
		-60	380.2	590	0,161	<u>32,334,0</u> 33,0	<u>71,673,3</u> 72,0
09Г2С	19	+20	<u>294,8315,6</u> 306,1	<u>503517</u> 508	0,185	<u>36,638,6</u> 37,4	78,2
		-30	<u>329,1336,1</u> 332,6	<u>544551</u> 547	0,182	38,3	78,2
		-60	<u>347,0353,4</u> 350,2	589	0,190	40,0	75,0
09Г2С-Ш	70	+20	275	450	0,180	39,1	
		-60	332	530	0,171	40,0	
		-70	384	556	0,139	39,0	
14Γ2ΑΦ	40	+20	$\frac{400415}{406}$	<u>576586</u> 581	0,135	<u>32,033,3</u> 32,6	<u>67,267,7</u> 67,5
		-60	430	612	0,133	32,0	67,0

Таблица 4. Механические свойства и показатель деформационного упрочнения n^p конструкционных сталей

Марка стали	Толщина об- разца, мм	С	Mn	Si	Ni	Cu	S	Р	Cr
10ХСНД	25	0,079	0,73	0,944	0,61	0,40	0,027	0,022	0,74
10ХСНД	37	0,073	0,55	0,844	0,59	0,42	0,023	0,014	0,73
09Г2С	19	0,050	1,13	0,670	0,02	0,05	0,045	0,017	0,10
14Γ2ΑΦ	40	0,200	1,67	0,458	0,09	0,35	0,036	0,030	0,17

Таблица 5. Химический состав исследуемых конструкционных сталей, мас. %

на рис. 6, на такое же значение. При построении кривой *1* на рис. 6 использовали минимальные экспериментальные значения ударной вязкости образцов Шарпи исследуемой зоны сварного соединения.

Расчетная теоретическая деформационная кривая $\delta_{1c}^{(t)}$, соответствующая температурному сдвигу 20 °C, представлена на рис. 6. Как видно из рисунка, полученная точка пересечения кривых 2 и 3 также практически совпадает с температурой хрупковязкого перехода, где начинается стабильное подрастание трещины. Вязкость разрушения низколегированных конструкционных сталей. Рассмотрим результаты исследований характеристик вязкости δ_c (δ_{1c}) в плоскости проката конструкционных сталей марок 09Г2С, 10ХСНД, 14Г2АФ.

Механические свойства и показатель деформационного упрочнения *n*^р, вычисленный по формуле (2), исследуемых конструкционных сталей в плоскости проката представлены в табл. 4.

Химический состав исследуемых сталей приведен в табл. 5.

Для определения характеристик трещиностойкости и значений ударной вязкости стали 10ХСНД

Таблица 6. Результаты испытаний образцов Шарпи на ударный изгиб (ориентация образцов поперек проката)

				-	
Марка стали	<i>t</i> , MM	<i>Т</i> _{исп} , ^о С	а _v , Дж/см ²	a_v^{\max} , Дж/см ²	ΔT , °C
10ХСНД	25	+20	82; 80; 68	82	24
		0	63; 59		
		-30	30; 28;26		
		-60	21; 18		
10ХСНД	37	+20	210; 192; 181	210	17
		0	175; 150; 131		
		-20	106; 85;78		
		-40	72; 58; 51		
		-60	52; 47; 35		
09Г2С	19	+20	315; 198; 196	315	20
		-20	155; 87;75		
		-40	92; 55; 52		
		-60	72; 14; 7		
		-70	22; 16; 15		
09Г2С-Ш	70	+20	>375	>375	1
		0	>375		
		-20	>375		
		-30	>375; 300; 314		
		-40	234; 285; 282		
14Γ2ΑΦ	36	-60	212; 207; 229	256	6
		-80	20; 15; 9		
		+20	256; 256		
		0	205; 196;161		
		-40	150; 97; 92		
		-70	61; 51; 15		

AUTOMATICATICATION

Рис. 7. Температурная зависимость ударной вязкости листового проката стали марки 10ХСНД толщиной 25 (*a*) и 37 мм (*б*) (обозначения те же, что и на рис. 5)

в плоскости проката (с толщинами листа 40 и 25 мм) изготовили образцы для оценки характеристики δ_c толщиной 37 и 25 мм в соответствии с рекомендациями ГОСТ 25.506–85 (тип 4). Аналогично из конструкционных сталей 09Г2С, 09Г2С-Ш и 14Г2АФ для оценки характеристики δ_c изготовили образцы толщиной 19, 70 и 36 мм соответственно. Образцы Шарпи для данных материалов вырезали из центральной части металлопроката по толщине с ориентацией надреза в том же направлении, что и для оценки характеристики δ_c .

НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕ

Monuc	U	<i>(</i> 10)		$T_{20} = +\Delta T$	т	\$ (\$)
марка стали	<i>t</i> , мм	<i>J</i> (р) по (5)	<i>Т</i> _{28 Дж} , °С	$a_{v}^{28 \text{Дж}}$, Дж/см ²	^л исп'	о _с (о _і), мм
10ХСНД	25	1,73	-22	60	-20	0,365
					-40	0,040
					-53	0,115
					-60	0,038
10ХСНД	37	1,36	-60	48	-25	0,227
					-40	0,099
					-60	0,117
09Г2С	19	1,90	-48	66	+20	(0,500)
					+20	(0,480)
					+20	(0,480)
					-37	0,475
					-40	0,515
					-40	0,545
					-51	0,305
					-53	0,190
					-60	0,125
					-63	0,480
					-63	0,510
					-67	0,085
09Г2С-Ш	70	1,16	-77	40	-65	0,950
					-73	0,373
					-74	0,133
					-75	0,202
14Γ2ΑΦ	36	1,44	-62	50	+20	(0,305)
					-40	0,300
					-53	0,190

Т аблица 7. Результаты оценки характеристик трещиностойкости δ_c (δ_{1c})

Результаты испытаний на ударный изгиб представлены в табл. 6 и на рис. 7, 8.

Рис. 8. Температурные зависимости ударной вязкости листового проката стали марки 09Г2С толщиной 19 мм (*a*), 09Г2С-Ш толщиной 70 мм (*б*) и 14Г2АФ толщиной 36 мм (*в*) (обозначения те же, что и на рис. 5)

ADDREAMADORATICSAE

Рис. 9. Температурная зависимость характеристик трещиностойкости проката из стали 10ХСНД: I — расчетная кривая δ_{1c} по формуле (1); 2 — условие по формуле (10); 3 — кривая $\delta_{1c}^{(t)}$ по формуле (7)

Как видно из табл. 6 и рис. 7, исследуемый металлопрокат стали марки 10ХСНД толщиной 25 мм характеризуется крайне низкими значениями работы разрушения a_v^{max} и повышенной температурой для удовлетворения требования в 28 Дж.

Значение δ_c определяли при статическом нагружении образцов в условиях поперечного трехточечного изгиба в температурном интервале от –75 до +20 °C. Измерение перемещений берегов трещины осуществляли двумя датчиками смещения. Результаты испытаний приведены в табл. 7 и на рис. 9, 10. Необходимо также отметить, что характеристики вязкости δ_c при температурах ниже –20 °C определяли по максимальной нагрузке.

Для определения δ_i при вязком разрушении сталей 09Г2С и 14Г2АФ во время испытаний образцов при комнатной температуре фиксировалось стабильное подрастание трещины Δl , после

чего по результатам испытания нескольких образцов оценивали значение критического раскрытия трещины, соответствующее началу вязкого разрушения [9, 10].

Скорректированная расчетная характеристика вязкости разрушения $\delta_{1c}^{(t)}$ полученная путем температурного сдвига кривой *1* на величину ΔT в соответствии с табл. 7, показана на рис. 9, 10.

Как видно из представленных данных, предлагаемые расчетные значения $\delta_{1c}^{(l)}$ также довольно хорошо описывают экспериментальные значения деформационной характеристики δ_c по нижней границе их разброса в зависимости от толщины исследуемого образца. Это свидетельствует о правильности выбранных характеристик, влияющих на условие перехода от плоской деформации к плоскому напряженному состоянию зависимости от толщины исследуемого элемента.

Что касается изменения температурного сдвига *C* по стандарту ASTM Е 1921–97, то, несмотря на общую тенденцию к уменьшению значения ΔT при увеличении толщины исследуемых образцов, прямой зависимости между этими двумя характеристиками не наблюдается. Полученные экспериментальные значения ΔT в зависимости от толщины исследуемых образцов на трехточечный изгиб представлены на рис. 11. Как видно из рисунка, регламентируемый температурный сдвиг *C* по стандарту ASTM Е 1921–97 только ограничивает температурную область поиска значений, соответствующих $K_{jc} = 100$ МПа·м^{0,5}, так как описывает только средние значения экспериментальных данных.

В целом следует отметить, что по результатам экспериментальной проверки при определении температурного сдвига с помощью предложенного подхода в работе [1] следует учитывать деформационные и прочностные характеристики материала. Это дает возможность более обоснованно подходить как к выбору температурного сдвига, так и к определению температурного перехода с учетом толщины конструктивного элемента.

Рис. 10. Температурная зависимость характеристик трещиностойкости проката: *а* — сталь 09Г2С; *б* — сталь 09Г2С-Ш; *в* — сталь 14Г2АФ: *I*–*3* — то же, что и на рис. 9

ALGURANTINGGAR

Рис. 11. Зависимость температурного сдвига ΔT от толщины исследуемых образцов на трехточечный изгиб при статическом нагружении: кривая — рекламентируемый температурный сдвиг *C* по стандарту ASTM Е 1921–97; точки — экспериментальные значения ΔT

- 1. Дядин В. П. Оценка величины температурного сдвига в зависимости от толщины образца по силовому и деформационному критериям механики разрушения // Автомат. сварка. 2010. № 4. С. 19–27.
- 2. Гиренко В. С., Дядин В. П. Корреляция характеристик трещиностойкости материалов и сварных соединений с

результатами стандартных механических испытаний // Там же. — 1990. — № 6. — С. 1–4.

- 3. Дядин В. П. Сопоставление значений ударной вязкости образцов Шарпи и Менаже при вязком разрушении // Там же. 2004. № 4. С. 24–29.
- 4. *Малинин Н. Н.* Прикладная теория пластичности и ползучести. — М.: Машиностроение, 1975. — 400 с.
- Thickness effects on brittle fracture toughness of weld metal of high tensile strength steel / S. Kawano, M. Tada, H. Yajima, K. Nagai // Trans. Jap. Weld. Soc. — 1987. — 18, № 1. — P. 68–76.
- CAN/CSA-S473–92. Canadian standard association. Steel structures. — Pt/III: Of the cod for the design, construction and installation of fixed offshore structures. — 1992.
- Правила классификации и постройки ПБУ и МСП / Российский морской регистр судоходства. — С.-Пб.: РМРС, 2006.
- Горынин И. В., Ильин А. В. Теоретические и экспериментальные исследования сопротивляемости хрупким разрушениям сварных конструкций для шельфа Арктики // Автомат. сварка. — 2008. — № 11. — С. 24–29.
- Вязкость разрушения металла сварных швов с пределом текучести 600...800 МПа, выполненных в защитных газах / В. Ф. Мусияченко, Л. И. Миходуй, В. И. Кирьян и др. // Там же. — 1988. — № 6. — С. 39–44.
- Критическое раскрытие трещины при квазихрупком и хрупком разрушении / С. В. Серенсен, В. С. Гиренко, В. И. Кирьян, В. А. Дейнега // Там же. — 1975. — № 2. — С. 1–6.

Investigation results on fracture toughness based on the deformation criterion are given for the most common domestic low-alloy structural steels of different thicknesses. An approach to evaluation of the tough-brittle transition temperature depending on the thickness of the investigated rolled metal is suggested. Shift of the basic deformation δ_{1c} -curve depending on the thickness of the rolled metal and its standard strength characteristics was experimentally verified.

Поступила в редакцию 25.05.2010

РАЗРАБОТКА ТЕХНОЛОГИИ ВОССТАНОВЛЕНИЯ РЕЗЬБОВЫХ ОТВЕРСТИЙ ОСЕЙ КОЛЕСНЫХ ПАР ЖЕЛЕЗНОДОРОЖНЫХ ВАГОНОВ

(Инновационный проект НАН Украины, выполненный в ИЭС им. Е. О. Патона)

Разработана технология восстановления поврежденных резьбовых отверстий M20 шеек осей железнодорожных вагонов РУ1-Ш методом взрывного плакирования. Технология характеризуется низкой затратностью (по сравнению со сваркой плавлением), равнопрочностью сварных соединений, отсутствием в них трещин, характерных для технологии восстановления наплавкой, а также отсутствием пор, непроваров, подрезов и шлаковых включений, усадки сокращения и уменьшения диаметра посадочного места шейки оси под роликовый подшипник.

На первом этапе работы объектом исследования были поврежденные резьбовые отверстия M20-6H фрагментов шеек осей РУ1-Ш длиной 180 мм, на втором — поврежденная резьба на натурных осях длиной 1450 мм. Покрытие методом взрывного плакирования наносили на предварительно расточенный канал диаметром 20,4 мм цилиндрической трубки из стали 20. Вместе с ГП «Украинский НИИ вагоностроения» разработана оригинальная методика механических испытаний сварных соединений восстановленных резьбовых отверстий. Тесты на сопротивление усталости сварных соединений, проведенные при минимальных и максимальных усилиях нагрузки (49 и 98 m и частоте 50 Гц), показали средние значения долговечности в 122000 циклов, которые всего на 4 % ниже базовых значений долговечности новых осей, составляющих 127000 циклов.

По новой технологии восстановлены поврежденные отверстия на двух натурных осях РУ1-Ш, переданных на ГП «Укрспецвагон» и включенных в состав исследовательской вагонной тележки, которая проходит маршрутные испытания на станции Панютино–Лозовая на протяжении 2011 г. По завершении испытаний представленная технология планируется к внедрению на вагоноремонтных заводах ГП «Укрзалізниця».