## ВЛИЯНИЕ ВЕЛИЧИНЫ ЗАЗОРА И ИСХОДНОГО СОСТОЯНИЯ ПРИПОЯ НА СТРУКТУРООБРАЗОВАНИЕ ПАЯНЫХ СОЕДИНЕНИЙ ТИТАНОВОГО СПЛАВА

## С. В. МАКСИМОВА, В. Ф. ХОРУНОВ, В. В. ВОРОНОВ

ИЭС им. Е. О. Патона НАНУ. 03680, г. Киев-150, ул. Боженко, 11. E-mail: office@paton.kiev.ua

Припои системы Ti-Zr-Ni-Cu как в аморфном, так и в кристаллическом состоянии находят широкое применение при пайке титана и его сплавов. Утверждается, что при пайке аморфными припоями создаются особые условия получения соединений. При этом не обсуждается вопрос влияния величины зазора под пайку. Этот вопрос исследован в настоящей работе. Для проведения сравнительных металлографических исследований соединений были спаяны в вакууме специальные образцы с фиксированным переменным зазором титанового сплава марки OT4 (Ti-3Al-1,5Mn) с помощью припоя Ті-23Сu-12Zr-12Ni в аморфном и кристаллическом состоянии. Установлено, что микроструктура и химический состав фаз, кристаллизующихся в широком участке шва соединений, полученных с помощью аморфного припоя Ті-23Си-12Zr-12Ni, аналогичны структуре широких паяных швов, полученных с помощью литого припоя этого же состава. В структуре четко фиксируются первичные зерна твёрдого раствора и эвтектика. В капиллярных зазорах швом является диффузионная зона с общими зернами основного металла, обогащенными элементами припоя, как в случае пайки аморфным, так и кристаллическим припоем. Диффузионные процессы, протекающие на межфазной границе, находят подтверждение в полученных результатах рентгеноспектральных исследований. Так, при концентрации циркония в шве равном 16,39 мас. % на расстоянии примерно 100 мкм вглубь паяемого металла его концентрация уменьшается до 1,22 мас. %, а на расстоянии до 150 мкм цирконий вовсе не обнаруживается. На основании результатов металлографических исследований и рентгеноспектрального микроанализа титановых соединений, показано, что определяющим фактором при формировании микроструктуры паяных швов является величина паяльного зазора, которая обуславливает морфологическое строение шва. Библиогр. 8, табл. 5, рис. 8.

Ключевые слова: титановый сплав, припой, пайка, величина зазора, соединение, аморфное и кристаллическое состояние, паяный шов, микроструктура

AUTOMATICAL

Как правило, при пайке титановых сплавов широко используют припои в кристаллическом и аморфном состоянии. Главным преимуществом припоев с аморфной структурой является то, что их получают в виде пластичных гомогенных (по химическому составу) тонких лент (30...50 мкм) даже из сплавов, содержащих хрупкие интерметаллидные или эвтектические фазы [1]. Это позволяет изготавливать закладные элементы любой формы, строго дозировать количество припоя и паять очень тонкие материалы (например, теплообменники, где толщина разделительной пластины около 0,08 мм). Благодаря высокой химической однородности, припои с аморфной структурой имеют узкие температурные интервалы плавления, что обеспечивает хорошее смачивание паяемой поверхности, уменьшает вероятность образования непропаев, и, таким образом, обеспечивает высокую коррозионную стойкость и прочность паяных соединений [2]. К таким припоям принадлежат сплавы системы Ti-Zr-Ni-Cu, которые широко применяют при пайке титана и его сплавов [3-6].

Цель настоящей работы — исследование влияния величины паяльного зазора на структурообразование швов титанового сплава при использовании припоев в аморфном и кристаллическом состоянии.

Для получения паяных соединений в качестве основного материала использовали титановый псевдо  $\alpha$ -сплав ОТ4 (Ti–3Al–1,5Mn), структура которого представлена  $\alpha$ -фазой и незначительным количеством  $\beta$ -фазы (1...5 %). Он хорошо обрабатывается в горячем и холодном состоянии и используется в виде листов, полос и ленты.

Припой Ti-23Cu-12Zr-12Ni использовали в аморфном (пластичная лента толщиной 30 мкм) и кристаллическом состоянии (литой слиток измельчали и использовали в виде кусочков). Припой выплавляли в лабораторной электродуговой печи на медном водоохлаждаемом поду в атмосфере очищенного аргона. Каждый слиток переплавляли не менее пяти раз для усреднения химического состава. В качестве исходных материалов использовали титановую губку (99,9 %), йодидный цирконий (99,9 %), никель электролитический (99,9 %), медь электролитическую (99,9 %). Химический состав сплавов контроли-

© С. В. Максимова, В. Ф. Хорунов, В. В. Воронов, 2013



Рис. 1. Схемы образцов для проведения металлографических исследований с использованием припоя в аморфном (*a*) и литом (*б*) состоянии: *l* — припой; *2* — закладной элемент для фиксации зазора

ровали с помощью флуоресцентного рентгеноспектрального анализа на спектрометре VRA-30.

Перед пайкой титановые пластины (толщина 2 мм) подвергали механической очистке и собирали таким образом, чтобы в зазоре между пластинами с одной стороны находилась фольга тантала шириной 150 мкм (для фиксации максимальной величины зазора), а с противоположной стороны между паяемыми пластинами образовывался капиллярный зазор. После этого их прихватывали на контактной машине с помощью танталовой ленты.

Для проведения металлографических исследований паяли нахлесточные соединения с переменным фиксированным зазором (рис. 1).

Припой в аморфном состоянии в виде лент укладывали между паяемыми пластинами титанового сплава (рис. 1, *a*), в литом — в виде отдельных кусочков располагали на паяемой плас-

## НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

тине у зазора (рис. 1, б). При нагреве припой с литой структурой расплавлялся и за счет капиллярных сил затекал в паяемый зазор. Пайку образцов осуществляли в вакуумной печи при температуре 1000 °С, время выдержки составляло 10 мин, степень разрежения рабочего пространства — (2...5)·10<sup>-3</sup> Па. Охлаждение образцов в интервале температур 1000...600 °С осуществляли со скоростью 35...40 °С/мин. Металлографические исследования проводили с помощью сканирующего электронного микроскопа CamScan-4 (Англия), оснащенного энергодисперсионным анализатором ENERGY 200 с программным обеспечением INCA и JSM 840 фирмы «Jeol», снабженного рентгеновским микроанализатором системы Link с волновым спектрометром Ortec.

Исследование химической неоднородности быстрозакаленной ленты Ti-23Cu-12Zr-12Ni в исходном состоянии подтверждает гомогенное распределение составляющих легирующих элементов по ее ширине вдоль линии сканирования (рис. 2, a,  $\delta$ ) [7, 8]. В кристаллическом состоянии структура данного сплава состоит из трех фаз (рис. 2, a, табл. 1).

При визуальном осмотре паяных образцов отмечено хорошее смачивание паяемого материала, образование плавных галтелей, отсутствие дефектов. В соединениях, полученных с помощью быстрозакаленного припоя в аморфном состоянии, как правило, формируются незначительные по размеру галтели.

При постоянных температурно-временных параметрах технологического процесса пайки в галтельных участках и широких зазорах характер затвердевания жидкого припоя и морфологические особенности структурообразования близки.

Так, при пайке литым припоем наблюдали полные галтели, прямую и обратную (рис. 3, *a*, *б*).

| Таблица 1  | l. Химический  | состав | структурных | составля- |
|------------|----------------|--------|-------------|-----------|
| ющих литог | о припоя, мас. | %      |             |           |

| Исследуемый участок        | Ti    | Zr    | Cu   | Ni    |
|----------------------------|-------|-------|------|-------|
| Зерна дисперсные (темные)  | 76,70 | 8,33  | 9,92 | 5,05  |
| Фаза по границам (светлая) | 53,05 | 14,41 | 18,8 | 13,74 |
| Эвтектика                  | 59,48 | 5,78  | 26,0 | 8,74  |



Рис. 2. Микроструктуры припоя в аморфном (*a*), кристаллическом (*в*) состоянии и характер распределения составлящих элементов (*б*) аморфного припоя





Рис. 3. Микроструктуры обратной (*a*) и прямой (б) галтели паяного соединения, выполненного припоем с кристаллической структурой



Рис. 4. Микроструктура участка паяного шва, выполненного припоем с аморфной (а), кристаллической (б) структурой

CONSTRUCTION

Металлографические исследования и изучение химической неоднородности показали, что количество структурных составляющих и их химический состав в галтельном участке и широком паяном шве практически одинаковы (табл. 2). В данных участках отношение количества жидкого металла припоя к поверхности контакта с основным металлом достаточно велико, что замедляет протекание выравнивающих диффузионных процессов. Металл шва кристаллизуется в соответствии с основными закономерностями затвердения литых металлов и сплавов.

При пайке быстрозакаленным припоем в аморфном состоянии в широком зазоре (40...10 мкм), наблюдаются те же структурные составляющие



Рис. 5. Микроструктура эвтектического участка паяного шва, выполненного припоем с кристаллической структурой

(рис. 4, а), что и при пайке припоем в кристаллическом состоянии в широком зазоре (рис. 4, б). В первую очередь кристаллизуется первичная фаза в виде дендритов на основе титана (54,61...54,59 мас. %), содержащих медь, никель, цирконий (соответственно: 27,71; 7,91; 9,49 мас. %) (см. спектр 2 на рис. 4, а, б, табл. 2). Затем в междендритных пространствах кристаллизуется более легкоплавкая фаза — эвтектика, в которой определено повышенное содержание циркония (23,12...24,4 мас. %). Более детальное исследование эвтектического участка показало, что одной из составляющих является светлая фаза сложного состава, обогащенная цирконием (27,9 мас. %), содержащая остальные элементы припоя (спектр 3 на рис. 5, табл. 3).

Второй составляющей эвтектики является темная фаза, которая кристаллизуется в виде дисперсных включений 0,4...1,6 мкм (см. спектр 4, 5 на рис. 5, табл. 3), концентрация циркония в ней снижается до 19,5...20,87 мас. %.

Следует отметить, что в паяных швах и в галтельных участках в незначительных количествах присутствуют алюминий и марганец — составляющие элементы паяемого титанового сплава. Это можно объяснить взаимными диффузионными процессами между паяемым материалом и припоем, протекающими во время пайки на межфазной границе, приводящими к ликвационной

| ных соед                                                               | цинении | , mat. 70 |      |       |       |       |  |
|------------------------------------------------------------------------|---------|-----------|------|-------|-------|-------|--|
| Номер<br>спектра                                                       | Al      | Ti        | Mn   | Ni    | Cu    | Zr    |  |
| Галтельный участок (припой с кристаллической структурой,<br>рис. 3, б) |         |           |      |       |       |       |  |
| 1                                                                      | 0,44    | 57,06     | _    | 6,4   | 30,75 | 5,34  |  |
| 2                                                                      | 1,51    | 44,81     | 0,73 | 13,37 | 15,82 | 23,76 |  |
| 3                                                                      | 2       | 73,08     | 0,47 | 5,29  | 11,74 | 7,42  |  |
| Паяный шов (припой с аморфной структурой, рис. 4, а)                   |         |           |      |       |       |       |  |
| 1                                                                      | 0,87    | 50,23     | _    | 10,43 | 22,9  | 15,58 |  |
| 2                                                                      | 0,38    | 54,59     | _    | 7,91  | 27,71 | 9,41  |  |
| 3                                                                      | 1,35    | 46,20     | 0,47 | 12,86 | 14,72 | 24,4  |  |
| 4                                                                      | 1,81    | 76,08     | 0,55 | 4,47  | 9,93  | 7,17  |  |
| 5                                                                      | 0,73    | 60,90     | _    | 7,01  | 25,82 | 5,54  |  |
| 6                                                                      | 1,86    | 77        | 0,38 | 4,56  | 10,16 | 6,04  |  |
| 7                                                                      | 1,87    | 75,34     | 1,06 | 5,50  | 6,01  | 10,22 |  |
| Паяный шов (припой с кристаллической структурой, рис. 4, б)            |         |           |      |       |       |       |  |
| 1                                                                      | 0,64    | 51,25     | 0,2  | 10,63 | 22,35 | 14,94 |  |
| 2                                                                      | 0,33    | 54,61     | 0,13 | 8,5   | 28,84 | 7,59  |  |
| 2                                                                      | 1 1 1   | 46.01     | 0.47 | 12.61 | 15.60 | 22.12 |  |

Та б л и ц а 2. Химическая неоднородность участков паяных соединений, мас. %

химической неоднородности, появлению неравновесных структур, поскольку кристаллизация меТаблица 3. Химическая неоднородность эвтектического участка паяного шва, выполненного припоем с кристаллической структурой

|                  | 1 15 51 |       |      |       |       |       |  |
|------------------|---------|-------|------|-------|-------|-------|--|
| Номер<br>спектра | Al      | Ti    | Mn   | Ni    | Cu    | Zr    |  |
| 1                | 0,43    | 54,94 | 0,04 | 8,52  | 28,53 | 7,54  |  |
| 2                | 1,06    | 47,85 | 0,58 | 13,62 | 13,53 | 23,36 |  |
| 3                | 1,08    | 39,68 | 0,45 | 16,54 | 14,35 | 27,91 |  |
| 4                | 0,60    | 46    | 0,31 | 13,24 | 20,35 | 19,5  |  |
| 5                | 1,15    | 52,39 | 0,38 | 12    | 13,23 | 20,87 |  |

талла паяного шва и галтельного участка протекает в неравновесных условиях.

При постоянном режиме пайки (одинаковой температуре, выдержке, скорости нагрева и охлаждения) уменьшение ширины паяльного зазора (до 4...5 мкм) приводит к изменению морфологического строения паяных швов, полученных при использовании припоя с аморфной (рис. 6, *a*, *в*) и кристаллической структурой в одинаковой степени (см. рис. 6, *б*, *г*).

Эвтектические участки в классическом понимании отсутствуют. Наблюдается плоский фронт кристаллизации паяного шва с образованием двухфазной структуры (см. рис. 6, a,  $\delta$ , табл. 4). Уменьшение зазора сокращает пути диффузии в жидком припое, что способствует выравниванию его химического состава по ширине паяного шва.



Рис. 6. Микроструктуры паяного шва при уменьшении паяльного зазора, выполненных припоем с аморфной (*a*, *s*) и кристаллической структурой (*б*, *г*)

## НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

Т а б л и ц а 4. Химическая неоднородность паяных швов при уменьшении паяльного зазора, мас. %

| Номер<br>спектра                               | Al                                      | Ti        | Mn        | Ni       | Cu         | Zr    |  |
|------------------------------------------------|-----------------------------------------|-----------|-----------|----------|------------|-------|--|
|                                                | Припой с аморфной структурой, рис. 6, а |           |           |          |            |       |  |
| 1                                              | 0,64                                    | 55,03     | —         | 6,53     | 26,66      | 11,15 |  |
| 2                                              | 1,86                                    | 75,93     | 0,55      | 4,49     | 8,49       | 8,68  |  |
| 3                                              | 3,4                                     | 85,98     | 0,56      | 2,64     | 5,03       | 2,38  |  |
| Г                                              | Ірипой с                                | кристаллі | ический с | труктуро | й, рис. 6, | б     |  |
| 1                                              | 1,73                                    | 39,04     | 0,39      | 12,8     | 17,44      | 28,6  |  |
| 2                                              | 0,4                                     | 54,99     | _         | 7,34     | 27,73      | 9,53  |  |
| 3                                              | 2,79                                    | 84,16     | 0,39      | 1,41     | 2,72       | 8,52  |  |
|                                                | Припой с аморфной структурой, рис. 6, в |           |           |          |            |       |  |
| 1                                              | 2,11                                    | 79,6      | 0,5       | 3,19     | 7,93       | 6,67  |  |
| 2                                              | 3,33                                    | 91,69     | _         |          | 2,47       | 2,51  |  |
| 3                                              | 2,02                                    | 79,52     | 1,36      | 4,9      | 6,81       | 5,4   |  |
| Припой с кристаллической структурой, рис. 6, д |                                         |           |           |          |            |       |  |
| 1                                              | 0,58                                    | 56,51     |           | 6,58     | 30,16      | 6,15  |  |
| 2                                              | 2,01                                    | 76,25     |           | 4,08     | 11,16      | 6,5   |  |
| 3                                              | 2,13                                    | 80,63     | 0,51      | 3,48     | 8,86       | 4,39  |  |
| 4                                              | 3                                       | 89,08     |           | 1,53     | 4,43       | 1,96  |  |

Дальнейшее уменьшение паяльного зазора при использовании припоя с аморфной структурой приводит к сужению шва и в капиллярном (практически нулевом) зазоре наблюдается диффузионная зона из общих зерен основного металла, которая и является паяным швом. Общие зерна основного металла содержат повышенное количество алюминия — 2,11 мас. % и пониженное количество составляющих элементов припоя (см. спектр 1 на рис. 6, в, табл. 4). Такая структура обусловлена тем, что припой и паяемый материал имеют общую металлическую основу — титан. Благодаря дифузионным процессам концентрация составляющих элементов припоя в этой зоне существенно снижается: цирконий до 6,67; медь до 7,93; никель до 3,19 мас. %. Металлографические исследования и рентгеноспектральный микроанализ подтверждают подобное формирование паяного шва и при использовании рассматриваемого припоя в кристаллическом состоянии.

Таблица 5. Химическая неоднородность паяного соединения, выполненного аморфным припоем, мас. %

| Номер<br>спектра | Al   | Ti    | Mn   | Ni    | Cu    | Zr    |
|------------------|------|-------|------|-------|-------|-------|
| 1                | 0,68 | 49,61 | _    | 12,15 | 21,17 | 16,39 |
| 2                | 1,92 | 78,4  | —    | 4,97  | 9,16  | 5,56  |
| 3                | 3,22 | 89,1  | 0,74 | 2,6   | 3,13  | 1,22  |
| 4                | 3,67 | 95,41 | 0,91 |       |       |       |



Рис. 7. Микроструктура паяного соединения, выполненного аморфным припоем

Во время пайки литой припой расплавляется, за счет капиллярных сил затекает в практически нулевой зазор и образует обратную галтель. В этом участке соединения шва как такового нет, а наблюдается диффузионная зона в виде общих сросшихся зерен основного металла на основе титана (см. рис. 6, *г*), обогащенных цирконием — 4,39 мас. % (см. спектр 3 на рис. 6, *г*, табл. 4), как и при использовании припоя с аморфной структурой.

В основном металле концентрация циркония снижается с увеличением расстояния от паяного шва. Так, в шве концентрация циркония составляет 16,39 мас. %, при удалении от шва (в перпендикулярном направлении, на расстояние примерно 100 мкм) его концентрация уменьшается и составляет 1,22 мас. %, а на расстоянии до 150 мкм цирконий не обнаруживается (спектр 4 на рис. 7, табл. 5).

Полученные данные рентгеноспектрального микроанализа свидетельствуют о высокой диффузионной активности циркония, его способности проникать на большую глубину в титановый сплав, что объясняется неограниченной растворимостью титана и циркония в широком интервале концентраций. Результаты приведенных исследований выявили, что в диффузионной зоне всегда присутствуют составляющие элементы припоя, но в малых концентрациях.

На основании результатов проведенных металлографических исследований и рентгеноспектрального микроанализа установлено, что структура металла шва паяных титановых соединений, полученных с помощью рассмотренного припоя (постоянный режим вакуумной пайки), зависит от ширины паяльного зазора. Чем меньше паяльный зазор, тем ближе структура металла шва к структуре основного металла.

Морфологические особенности и химический состав фаз, кристаллизующихся в широком участке шва соединений, полученных с помощью припоя Ti-23Cu-12Zr-12Ni в аморфном состоянии,

TROCKITCHTROCKUCI



Рис. 8. Микроструктуры паяного фрагмента пластинчато-ребристого титанового теплообменника: *а* — общий вид соединения с галтельными участками; *б* — центральная зона шва

аналогичен структуре широких паяных швов, полученных с помощью припоя в литом состоянии. В больших зазорах преобладает объемная кристаллизация металла, аналогичная кристаллизации металла в слитке.

Типичным примером формирования паяных швов с переменным зазором (припой толщиной 30 мкм, аморфное состояние) являются паяные соединения тонкостенных элементов сложной геометрической формы (рис. 8, *a*, *б*), иллюстрирующие морфологические особенности структурообразования, приведенные выше. Следует отметить, что использование припоев системы Ti–Zr– Ni–Cu в аморфном состоянии в виде тонких пластичных лент важно при пайке тонкостенных элементов теплообменных титановых устройств, когда необходимо строго соблюдать параметры паяльных зазоров с одновременным получением (за один цикл нагрева) многочисленных плотных паяных швов.

Таким образом, по результатам металлографических исследований паяных соединений титанового сплава с переменным зазором установлено, что при вакуумной пайке припоем Ti-23Cu-12Zr-12Ni в аморфном и кристаллическом состоянии обеспечивается хорошее формирование паяных соединений, получение плотных качественных швов, отсутствие каких-либо дефектов. Пластичные тонкие (30...50 мкм) припои в аморфном состоянии обеспечивают стабильную ширину паяльного зазора.

Микроструктура и морфологические особенности швов, полученных при постоянных температурно-временных параметрах технологического процесса пайки, зависят от ширины паяльного зазора, а не от агрегатного состояния припоя. Исследования паяных соединений с переменным зазором показали, что в широких зазорах и галтельных участках, содержащих большее количество припоя, формируется микроструктура, характерная для литого металла с образованием эвтектической составляющей (при использовании припоя как в аморфном, так и в кристаллическом состоянии). В капиллярных зазорах швом является диффузионная зона с общими зернами основного металла, обогащенными элементами припоя как при пайке в аморфном, так и кристаллическом состоянии.

- 1. Ковнеристий Ю. К. Аморфные стеклообразные металлические материалы. М.: Наука, 1992. 190 с.
- Калин Б. А., Севрюков О. Н., Федотов В. Т. Аморфные ленточные припои для высокотемпературной пайки. Опыт разработки технологии производства и применения // Свароч. пр-во. — 1996. — № 1. — С. 15–19.
- 3. Быстрозакаленные припои для пайки металлических конструкций / Б. А. Калин, В. Т. Федотов, О. Н. Севрюков, А. Н. Плющев // Перспективные материалы. 2001. № 6. С. 82–87.
- Калин Б. А., Севрюков О. Н., Федотов В. Т. Пайка тонколистовых конструкций из титановых сплавов аморфными припоями СТЕМЕТ // Свароч. пр-во. — 1996. — № 9. — С. 23–24.
- 5. *Хорунов В. Ф., Максимова С. В.* Получение и применение быстрозакаленных припоев // Там же. 2005. № 12. С. 25–30.
- Новые аморфные припои для пайки титана и его сплавов / Б. А. Калин, О. Н. Севрюков, В. Т. Федотов и др. // Там же. — 2001. — № 3. — С. 37–39.
- Шпак А. П., Куницкий Ю. А., Лысов В. И. Кластерные и наноструктурные материалы. — Киев: Академпериодика, 2002. — Т.2. — 540 с.
- Максимова С. В. Аморфные припои для пайки нержавеющей стали и титана и структура паяных соединений // Адгезия расплавов и пайка материалов. — 2007. — № 40. — С. 70–81.

A DIRONAUTENTRACIAN

Поступила в редакцию 13.12.2013