УДК 621.791.72

ФОРМИРОВАНИЕ СВАРНЫХ ШВОВ ПРИ ЭЛЕКТРОННО-ЛУЧЕВОЙ СВАРКЕ ЖАРОПРОЧНЫХ СТАЛЕЙ МАРОК 10Х9МФБА И 10Х12М

В. М. НЕСТЕРЕНКОВ, Л. А. КРАВЧУК, Ю. А. АРХАНГЕЛЬСКИЙ, А. А. БОНДАРЕВ ИЭС им. Е. О. Патона НАНУ. 03680, г. Киев-150, ул. Боженко, 11. E-mail: office@paton.kiev.ua

Исследовано влияние как режимов электронно-лучевой сварки жаропрочных сталей 10X12M и $10X9M\Phi BA$ толщиной $\delta_M = 30$ мм без предварительного подогрева, так и пространственного расположения электронного пучка относительно свариваемой детали на формирование сварных швов и склонность к образованию трещин. Установлено, что при электронно-лучевой сварке указанных жаропрочных сталей без предварительного подогрева устранение трещин и протяженных полостей достигается при скорости сварки не более 3 мм/с. Воспроизводимость качественных швов и формирование узких и глубоких швов с параллельными стенками литой зоны возможно путем применения технологических разверток электронного пучка по кругу и эллиптической траектории, а также расположения фокуса электронного пучка на уровне 2/3 толщины образца. При разработке технологии электронно-лучевой сварки жаропрочных сталей может быть рекомендован к применению неразрушающий метод ультразвукового контроля. Библиогр. 6, табл. 1, рис. 6.

Ключевые слова: электронно-лучевая сварка, жаропрочные стали, электронный пучок, схема сварки, погонная энергия, скорость сварки, фокусировка, дефекты, срединные трещины, лицевой и обратный валики шва

При изготовлении таких ответственных узлов в энергомашиностроении, как корпуса барабанов, паропроводы, диафрагмы, роторы, диски, лопатки турбин и других высоконагруженных деталей, широко применяются жаропрочные стали мартенситно-ферритного класса. Относясь к категории ограниченно свариваемых сталей, они требуют обязательного подогрева при дуговой сварке, так как склонны к подкалке с образованием мартенситных структур и трещин, а также последующего отпуска после нее. Оптимальные свойства эти стали получают в результате двойной термообработки нормализация + отпуск или закалка + отпуск и на сварку поступают обычно после окончательной термообработки.

Электронно-лучевая сварка (ЭЛС), термический цикл которой из-за низкого значения погонной энергии отличается высокими скоростями нагрева и охлаждения, а также малым временем нахождения металла при высоких температурах, начинает занимать прочные позиции в энергомашиностроении. По сравнению с дуговой сваркой при ЭЛС уменьшаются размеры околошовной зоны и зоны термического влияния, а также сдерживается развитие структурных изменений и деформаций, что позволяет повысить механические характеристики сварных соединений. Использование вакуума при ЭЛС идеально защищает расплавленный металл от взаимодействия с окружающей средой, что способствует повышению качества сварных соединений.

В настоящей работе исследовано влияние режимов ЭЛС жаропрочных сталей марок 10X12M и $10X9M\Phi FA$ толщиной $\delta_{\rm M}=30$ мм без предварительного подогрева, а также пространственного расположения электронного пучка относительно свариваемой детали на формирование сварных швов и их склонность к образованию трещин. Необходимо отметить, что исследуемые стали (таблица) для получения умеренных уровней прочности основного металла поступали на сварку в различных термических состояниях:

- сплав 10Х9МФБА подвергали процедуре нормализации + отпуск; при нормализации образцы нагревались до температуры 1040...1095 °C, затем следовала выдержка 72 мин и последующее охлаждение на воздухе; при отпуске образцы нагревались до температуры 770±10 °C, затем следовала выдержка 72 мин и последующее охлаждение на воздухе;
- сплав 10X12М подвергали процедуре закалки + отпуск; при закалке образцы нагревались до температуры 1050 °C с последующим охлаждением в масле; при отпуске образцы нагревались до температуры 720 °C с последующим охлаждением на воздухе.

Сварку образцов выполняли на установке УЛ-209М с энергетическим агрегатом ЭЛА-60/30, в состав которого входит электронная пушка с металлическим катодом и короткофокусной оптикой с током электронного пучка $I_{\Pi}=0...500$ мА. Склонность к образованию трещин определяли на

© В. М. Нестеренков, Л. А. Кравчук, Ю. А. Архангельский, А. А. Бондарев, 2013

ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

Химические составы исследуемых жаропрочных сталей, мас. %*

Марка стали	С	Si	Mn	Cr	W	Мо	V	Nb	Cu	Ni	Прочие
10Х9МФБА	0,070,13	0,150,55	0,270,63	7,909,60	_	0,801,10	0,160,27	0,050,11	≤ 0,25	≤ 0,43	S Γ 0,010 P ≤ 0,020
10X12M	0,10,15	≤ 0,50	Γ 0,60	11,513,0	_	0,300,60	_		Г 0,30	0,300,60	$S \le 0.030$ $P \le 0.030$

^{*} Дополнительные исследования по спектральному анализу выявили газы, мас. %: у сплава $10\text{Х9МФБA}\ [\text{O}_2] \leq 0{,}0037;\ [\text{N}_2] \leq 0{,}0386;\ [\text{H}_3] \leq 0{,}0009,\ \text{a y сплава }10\text{X}12\text{M} \longrightarrow [\text{O}_2] \leq 0{,}0033;\ [\text{N}_3] \leq 0{,}0310;\ [\text{H}_2] \leq 0{,}0008.$

стыковых образцах размером 200×100 мм толщиной $\delta_{_{\rm M}} = 30$ мм. Контроль фокусировки электронного пучка на поверхности образца производили по четкости изображения на мониторе системы наблюдения «РАСТР» [1] и параллельно по яркости свечения круговой развертки пучка диаметром $d_{\text{круг}} = 5$ мм с током пучка $I_{\Pi} \cong 10$ мА на медной массивной пластине. Узкие глубокие швы с параллельными стенками литой зоны получали путем заглубления фокуса электронного пучка в глубь образца, а также разверткой пучка по кругу или эллипсу, что обеспечивало угол сходимости пучка $\leq 5.10^{-2}$ рад при рабочем расстоянии от нижнего торца электронной пушки до образца $l_{\text{раб}} = 200...250$ мм [2, 3]. Наличие дефектов формирования сварного соединения выявляли неразрушающим методом ультразвукового контроля и последующими металлографическими исследованиями. Все образцы исследуемых жаропрочных сталей для устранения остаточной намагниченности подвергали дополнительному размагничиванию на специальном стенде и поступали на сварку с уровнем намагниченности не более 0,5 Гс.

Вначале с целью получения гарантированного формирования сварного шва на исследуемых жаропрочных сталях толщиной $\delta_{\rm M}=30$ мм были выполнены сквозные проплавления по сплошному металлу по схеме в нижнем положении (вертикальный электронный пучок) при перемещении электронной пушки вдоль координаты $X\!-\!X$ или $Y\!-\!Y$. В результате при изменении в широком диапазоне тока пучка $I_{\rm n}$, тока фокусировки $I_{\rm ф}$ и скорости сварки $v_{\rm cB}$ не удавалось сформировать бездефектный сварной шов: на лицевом валике образовывались нерегулярные занижения и подрезы шва, на обратном валике — волнообразное нерегулярное провисание металла шва.

Для исключения дефектов формирования сварного шва при сквозном проплавлении образцов толщиной $\delta_{\rm M}=30$ мм по схеме в нижнем положении была применена технологическая подкладка из свариваемого материала толщиной 8 мм. Значение тока пучка $I_{\rm II}$ подбирали таким образом, чтобы в процессе сварки на технологической подкладке получить отдельные точечные проплавления (проколы). Как показали результаты сквозных

проплавлений, при сварке с технологической подкладкой лицевой валик на обеих исследуемых сталях формируется регулярно, без занижений и подрезов.

Склонность жаропрочных сталей 10Х12М и 10Х9МФБА к образованию трещин исследовали, выполнив ряд сквозных проплавлений по сплошному металлу толщиной $\delta_{\rm M} = 30$ мм, по схеме в нижнем положении с технологической подкладкой при скоростях сварки 3, 6, 9, 12 мм/с. Режим проплавления образцов для обеих исследуемых сталей на каждой выбранной скорости сварки $v_{\rm cs}$ не изменяли. Ток фокусировки $I_{\rm th}$ устанавливали таким образом, чтобы фокус электронного пучка находился ниже поверхности образца на уровне 2/3 толщины образца; для данного случая значение недофокусировки электронного пучка от значения тока фокусировки на поверхности образца соответствует — $\Delta I_{\Phi} = 15\,$ мА. При рабочем расстоянии $l_{\mathrm{paf}} = 200\,$ мм технологическая развертка электронного пучка по кругу частотой $f_{\rm RD} = 500~\Gamma$ ц составила $d_{\text{KDVF}} = 1,5 \text{ мм}.$

Ультразвуковой контроль и металлографические исследования сварных соединений на образцах толщиной $\delta_{_{\rm M}} = 30$ мм показали, что жаропрочная сталь $10{\rm X}12{\rm M}$ не склонна к образованию трещин при скорости сварки в диапазоне $v_{_{\mathrm{CB}}} =$ = 3...6 мм/с; лишь при $v_{cr} = 9$ и 12 мм/с примерно на половине глубины проплавления обнаружен макродефект в виде срединной трещины длиной около 3 мм и шириной 0,05 мм. Как видно из рис. 1, по мере повышения скорости сварки конфигурация сварного шва изменяется: ширина лицевого валика шва уменьшается, поперечное сечение из конического приближается к цилиндрическому. Лицевой валик шва на всех скоростях сварки формируется с превышением, подрезы по краям шва отсутствуют. Обнаруженная срединная трещина приведенных выше размеров была выявлена неразрушающим методом ультразвукового

В отличие от жаропрочной стали 10X12M совсем другие результаты по склонности к образованию трещин получены при ЭЛС образцов стали $10X9M\Phi BA$ толщиной $\delta_{_{\rm M}}=30$ мм по схеме в нижнем положении с технологической подкладкой. Как показали металлографические исследо-

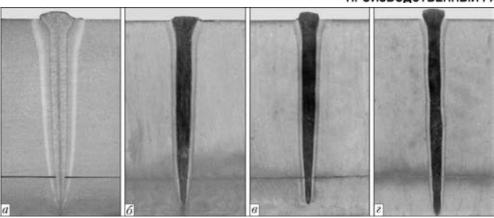


Рис. 1. Макроструктура (×1,5) сварных соединений сплава 10X12M толщиной $\delta_{\rm M}=30$ мм в нижнем положении ($U_{\rm VCK}=60$ кВ, $I_{\Phi}=630$ мА, $-\Delta I_{\Phi}=15$ мА, $d_{\rm KPYF}=1.5$ мм, $l_{\rm pa6}=200$ мм): $a-v_{\rm CB}=3$ мм/с, $I_{\rm II}=128$ мА; $\delta-v_{\rm CB}=6$ мм/с, $I_{\rm II}=184$ мА; $\epsilon-v_{\rm CB}=9$ мм/с, $I_{\rm II}=236$ мА; $\epsilon-v_{\rm CB}=12$ мм/с, $I_{\rm II}=310$ мА

вания сварных соединений, трещины отсутствуют на скорости сварки $v_{\rm cB}=3$ мм/с (рис. 2, a); на скорости сварки $v_{\rm cB}=6$, 9 и 12 мм/с обнаружены дефекты в виде срединных трещин, распространяющихся вертикально по оси шва от усиления к корню (рис. 2, δ – ϵ). Геометрические размеры срединных трещин в верхней и корневой части шва практически аналогичны дефектам на стали 10X12M.

Таким образом, на основании полученных результатов по сквозному проплавлению образцов толщиной $\delta_{\rm M}=30$ мм можно заключить, что с повышением скорости сварки возрастает склонность к образованию трещин на исследуемых жаропрочных сталях $10X9M\Phi {\rm EA}$ и 10X12M, а это в свою очередь подтверждает объяснение, что с увеличением скорости сварки происходит повышение как сварочных напряжений, так и темпа нарастания внутренних деформаций при сварке. Иными словами, при увеличении скорости сварки происходит более быстрая кристаллизация металла шва, что приводит к повышению темпа нарастания деформаций [4, 5]. Поэтому с большой достоверностью можно рекомендовать для практического

применения при ЭЛС жаропрочных сталей 10X12M и $10X9M\Phi FA$ толщиной $\delta_{_{\rm M}}=30$ мм скорость сварки не более $\nu_{_{\rm CB}}=3$ мм/с. По результатам сквозных проплавлений образ-

По результатам сквозных проплавлений образцов жаропрочных сталей $10\mathrm{X}12\mathrm{M}$ и $10\mathrm{X}9\mathrm{M}\Phi\mathrm{B}\mathrm{A}$ толщиной $\delta_{\mathrm{M}}=30$ мм по схеме в нижнем положении с технологической подкладкой (рис. 1, 2) были построены зависимости погонной энергии при ЭЛС и ширины лицевого валика шва от скорости сварки. Как показано на рис. 3, при увеличении скорости сварки в диапазоне $v_{\mathrm{CB}}=3...12$ мм/с значения погонной энергии q/v и ширины лицевого валика шва B уменьшаются нелинейно по гиперболическому закону $(1/v_{\mathrm{CB}})^{1/3}$: q/v=2,56 кДж/мм и B=5,8 мм при $v_{\mathrm{CB}}=3$ мм/с до q/v=1,55 кДж/мм и B=5,8 мм при $v_{\mathrm{CB}}=12$ мм/с, т. е. в 1,66 раза. При скорости сварки $v_{\mathrm{CB}}=6$ мм/с значение погонной энергии составило 1,84 кДж/мм, а ширина лицевого валика шва — B=4,5 мм.

Можно отказаться от технологических подкладок, обеспечив бездефектное формирование сварного шва при сквозном проплавлении, при переходе на схему ЭЛС горизонтальным электронным пучком и перемещении электронной пушки в гори-

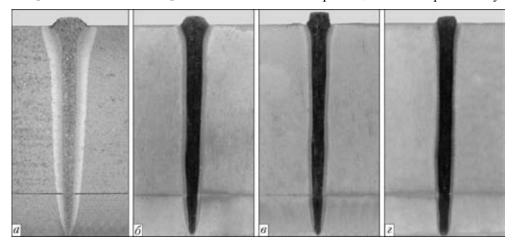


Рис. 2. Макроструктура (×1,5) сварных соединений сплава 10Х9МФБА толщиной $\delta_{\rm M}=30$ мм в нижнем положении ($U_{
m yck}=60$ кВ, $I_{
m d}=630$ мА, $-\Delta I_{
m d}=15$ мА, $d_{
m kpyr}=1$,5 мм, $l_{
m pa\delta}=200$ мм): $a-v_{
m cB}=3$ мм/с, $I_{
m \Pi}=128$ мА; $\delta-v_{
m cB}=6$ мм/с, $I_{
m \Pi}=184$ мА; $\epsilon-v_{
m cB}=9$ мм/с, $I_{
m \Pi}=236$ мА; $\epsilon-v_{
m cB}=12$ мм/с, $I_{
m \Pi}=310$ мА

ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

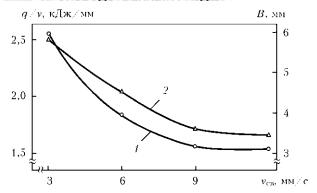


Рис. 3. Зависимость погонной энергии (I) и ширины лицевого валика шва (2) от скорости сварки жаропрочных сталей 10Х12М и 10Х9МФБА толщиной $\delta_{\rm M}=30$ мм в нижнем положении при $U_{\rm yck}=60$ кВ, $-\Delta I_{\rm ф}=15$ мА, $d_{\rm kpyr}=1,5$ мм, $l_{\rm pa\delta}=200$ мм

зонтальной плоскости по координате X–X или Y–Y. Этот прием оказался наиболее надежным и эффективным, позволяющим исключить корневые дефекты, свести к минимуму угловые деформации, уменьшить вероятность образования пор и протяженных полостей благодаря улучшению условий дегазации металла сварочной ванны.

Первые сквозные проплавления образцов жаропрочных сталей 10X12M и $10X9M\Phi FA$ толщиной $\delta_{\rm M} = 30$ мм горизонтальным электронным пуч-

ком показали, что направление силы тяжести жидкого металла сварочной ванны не существенно влияет на выбор мощности электронного пучка по сравнению с аналогичными режимами сварки в нижнем положении. В связи с этим и с учетом рекомендаций [6] были выполнены сквозные проплавления образцов исследуемых жаропрочных сталей толщиной 30 мм с гарантированным формированием лицевого и обратного валиков шва при различных положениях фокуса электронного пучка относительно поверхности образца. Как показано на рис. 4 и 5, лицевые и обратные валики швов на обеих жаропрочных сталях формируются стабильно и регулярно без занижений и вытекания металла шва во всем диапазоне недофокусировки $-\Delta I_{\phi} = 13...25$ мА (фокус электронного пучка заглублен внутрь образца), подрезов и видимых дефектов не наблюдается. Следует отметить, что при сварке жаропрочной стали 10Х12М имеет место сильное разбрызгивание металла шва с лицевой стороны в отличие от жаропрочной стали 10Х9МФБА, где процесс ЭЛС идет значительно спокойнее.

По результатам сквозных проплавлений образцов жаропрочных сталей 10X12M и $10X9M\Phi FA$ толщиной $\delta_{\rm M}=30$ мм горизонтальным электрон-

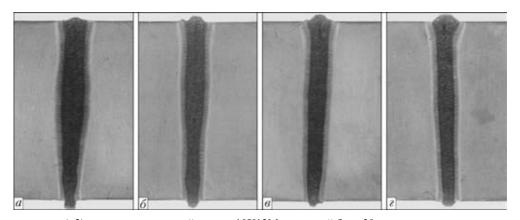


Рис. 4. Макроструктура (×2) сварных соединений сплава 10X12M толщиной $\delta_{\rm M}=30$ мм при сварке горизонтальным пучком ($U_{
m yck}=60$ кВ, $I_{
m I}=198$ мА, $v_{
m cB}=61$ мм/с, $d_{
m kpyr}=1$,5 мм/с, $l_{
m pa6}=200$ мм): a–e — соответственно – $\Delta I_{
m \varphi}=25$, 21, 17, 13 мА

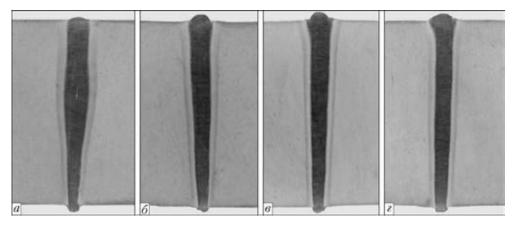


Рис. 5. Макроструктура (×2) сварных соединений сплава 10Х9МФБА толщиной $\delta_{\rm M}=30$ мм при сварке горизонтальным пучком ($U_{
m yck}=60$ кВ, $I_{
m H}=198$ мА, $v_{
m cB}=6$ мм/с, $d_{
m kpyr}=1$,5 мм/с, $l_{
m pa6}=200$ мм): a–г — соответственно – $\Delta I_{
m \varphi}=25$, 21, 17, 13 мА

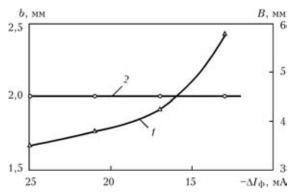


Рис. 6. Зависимость ширины лицевого (I) и обратного (2) валиков шва от заглубления фокуса электронного пучка при ЭЛС горизонтальным пучком жаростойких сталей 10X12M и $10X9M\Phi$ БА толщиной $\delta_{\rm M}=30$ мм ($U_{\rm YCK}=60$ кВ, $I_{\rm II}=198$ мА, $v_{\rm CB}=6$ мм/с, $d_{\rm KDYT}=1,5$ мм, $I_{\rm pa\delta}=200$ мм)

ным пучком и на основе анализа поперечных макрошлифов сварных соединений, приведенных на рис. 4, 5, были построены зависимости ширины лицевого и обратного валиков от заглубления фокуса электронного пучка внутрь образца $-\Delta I_{\Phi}$ при q/v=1,98 кДж/мм. Как показано на рис. 6, ширина обратного валика шва во всем диапазоне $-\Delta I_{\Phi}=13...25$ мА остается практически постоянной и составляет $b\cong 2$ мм, в то время как ширина лицевого валика шва с увеличением заглубления фокуса электронного пучка внутрь образца уменьшается нелинейно: до $-\Delta I_{\Phi}=17$ мА идет резкое уменьшение B, затем до $-\Delta I_{\Phi}=25$ мА уменьшение параметра B замедляется.

Металлографические исследования, проведенные на сварных соединениях жаропрочных сталей 10X12M и $10X9M\Phi FA$ толщиной $\delta_{\rm M}=30$ мм при ЭЛС горизонтальным электронным пучком, позволили установить, что положение фокуса пучка относительно поверхности образца влияет не только на форму сварного шва, но и может привести к образованию трещин. Как показано на рис. 4, a и 5, a, при большом заглублении фокуса электронного пучка в глубь образца в области половины глубины проплавления на обеих жаропрочных сталях образуются локальные уширения шва и срединные трещины в них длиной до

10 мм. С уменьшением тока недофокусировки — ΔI_{Φ} локальные уширения шва устраняются, а при — $\Delta I_{\Phi} = (13...17)$ мА форма шва из конической приближается к цилиндрической.

Выводы

- 1. Формирование швов со сквозным проплавлением жаропрочных сталей 10X12M и $10X9M\Phi BA$ толщиной $\delta_{\rm M}=30$ мм достигается при переходе на схему ЭЛС горизонтальным электронным пучком и перемещением электронной пушки в горизонтальной плоскости.
- 2. При ЭЛС жаропрочных сталей 10X12M и $10X9M\Phi FA$ толщиной $\delta_{\rm M}=30$ мм без предварительного подогрева устранение трещин достигается при скорости сварки не более 3 мм/с.
- 3. Применение технологических разверток электронного пучка по круговой и эллиптической траектории и расположение фокуса электронного пучка на уровне 2/3 толщины образца обеспечивает воспроизводимость качественных швов, а также формирование узких и глубоких швов с параллельными стенками литой зоны.
- Наблюдение процесса электронно-лучевой сварки и автоматическое слежение за стыком / О. К. Назаренко, В. И. Шаповал, Г. А. Лоскутов и др. // Автомат. сварка. 1993. № 5. С. 35–38.
- Sayegh G. State of the art of high energy density beam welding: Houdremont lecture. Tokyo: IIW, 1986. 41 p.
- 3. *Fritz D.* Electron beam welding of today // II Междунар. конф. по электронно-лучевым технологиям «ЭЛТ-88», Варна, 31 мая 4 июня 1988 г. Варна, 1988. С. 1048–1063.
- 4. *Морочко В. П., Сорокин Л. И., Зорин Н. Я.* Влияние режима электронно-лучевой сварки на форму шва и свойства сварных соединений жаропрочных сплавов толщиной 10...15 мм // Свароч. пр-во. 1975. № 6. С. 32–36.
- 5. Effects of welding parameters and prevention of defects in deep penetration EBW of heavy section steel / T. Shida, H. Kita, H. Okamura, Y. Kawada. S.I., S.a. (Intern. Inst. of Welding; IIW-IV-239–78).
- Исследование заглубления фокуса луча в образцах из титана на стабильность формирования шва при ЭЛС / В. Р. Петренко, Н. А. Ольшанский, А. П. Лопатко, Г. С. Расплетин // Докл. II Всесоюз. конф. «Актуальные проблемы сварки цветных металлов». Киев: Наук. думка, 1985. С. 223–226.

Поступила в редакцию 25.03.2013

