СТРУКТУРА МНОГОСЛОЙНЫХ ОБРАЗЦОВ, ИМИТИРУЮЩИХ НАПЛАВЛЕННЫЕ ИНСТРУМЕНТЫ ДЛЯ ГОРЯЧЕГО ДЕФОРМИРОВАНИЯ МЕТАЛЛОВ

И. А. РЯБЦЕВ, А. А. БАБИНЕЦ, Г. Н. ГОРДАНЬ, И. И. РЯБЦЕВ, Т. В. КАЙДА, Л. Т. ЕРЕМЕЕВА ИЭС им. Е. О. Патона НАНУ. 03680, г. Киев-150, ул. Боженко, 11. E-mail: office@paton.kiev.ua

Исследована структура многослойных наплавленных образцов, которые по составу наплавленного металла и размерам наплавленных слоев имитируют наплавленные инструменты для горячего деформирования металлов и сплавов. Наплавку проводили на образцы из низколегированной среднеуглеродистой стали 40Х. Для наплавки рабочего слоя использовали порошковую проволоку ПП-Нп-25Х5ФМС, обеспечивающую получение наплавленного металла типа инструментальной полутеплостойкой стали. Для наплавки подслоя использовали две проволоки — сплошную Cв-08А или порошковую ПП-Нп-12ХМФ. Исследования показали, что наплавленный металл 25Х5ФМС имеет структуру, состоящую из бейнитно-мартенситной смеси и остаточного аустенита, структура подслоя 12ХМФ — сорбитообразный перлит, а подслоя, наплавленного проволокой Cв-08А, — феррит. Установлено, что в зависимости от химического состава и структуры наплавленного подслоя в значительной степени меняется остаточное напряженное состояние наплавленного износостойкого слоя. В частности, наплавка подслоя порошковой проволокой ПП-Нп-12ХМФ примерно в 3 раза снижает остаточные напряжения в рабочем износостойком слое. Библиогр. 9, табл. 2, рис. 7.

Ключевые слова: дуговая наплавка, многослойная наплавка, структура наплавленного металла, подслой, термическая усталость

ADDRAMMARCA

В металлургии и машиностроении достаточно широко используют инструменты и оснастку для горячего деформирования металлов, которые эксплуатируются в условиях изнашивания и одновременного действия циклических термических и механических нагрузок. К их числу относятся прокатные валки, штампы горячей штамповки, ролики машин непрерывного литья заготовок, ножи горячей резки и т.п. Как правило, на поверхности подобных деталей после нескольких тысяч термических циклов в первую очередь появляются дефекты в виде трещин термической усталости. В то же время усталостные повреждения в результате эксплуатационных циклических механических нагрузок появляются в детали после нескольких миллионов циклов.

Для наплавки рабочего слоя таких деталей, в частности, стальных прокатных валков, используют материалы типа инструментальных теплостойких или полутеплостойких сталей. Учитывая, что в качестве основного металла для прокатных валков применяют углеродистые или высокоуглеродистые нелегированные или низколегированные конструкционные стали, для улучшения свариваемости наплавку стальных прокатных валков проводят с пластичным подслоем. Для наплавки подслоя используют проволоки Св-08А, Св-08Г2С и другие подобного типа [1–3]. Трещины термической усталости, как правило, распространяются на небольшую глубину от поверхности валка. Поэтому после их появления периодически удаляют пораженный ими рабочий наплавленный слой и проводят повторную наплавку детали. Теоретически и практически повторные наплавки можно проводить до появления в валке усталостных трещин от циклических механических нагрузок, которые могут привести к его разрушению.

На усталостную долговечность наплавленных инструментов для горячего деформирования металлов существенное влияние оказывают остаточные (технологические) и накладываемые на них эксплуатационные термомеханические нагрузки. Экспериментальная оценка влияния этих показателей на термическую и механическую усталостную долговечность наплавленных деталей достаточно сложна и требует значительных материальных затрат.

Для решения этой задачи авторами работы [4] были предложены математические модели и методика расчета напряженно-деформированного состояния наплавленной детали непосредственно после наплавки и в процессе эксплуатации. В частности, было показано, что наплавка пластичного подслоя приводит к снижению и перераспределению остаточных напряжений в наплавленном рабочем износостойком слое, что приводит к уве-

© И. А. Рябцев, А. А. Бабинец, Г. Н. Гордань, И. И. Рябцев, Т. В. Кайда, Л. Т. Еремеева, 2013

Рис. 1. Расчетная структура образца, наплавленного без подслоя: *а* — мартенсит; *б* — бейнит; 1 — основной металл сталь 40Х; 2 — наплавленный износостойкий слой 25Х5ФМС

личению его термической стойкости. Важная роль в расчетах отводится процессам изменения структурного состояния основного металла, наплавленных подслоя и рабочего слоя в процессе наплавки и последующей эксплуатации. При расчетах использовали термокинетические диаграммы распада переохлажденного аустенита [5] в исследованных материалах и подходы, развитые в работах В. И. Махненко [6, 7].

Цель данной работы — экспериментальное исследование структуры многослойных наплавленных образцов и сравнение их результатов с расчетными данными. В качестве основного металла в обоих случаях выбрали низколегированную среднеуглеродистую сталь 40Х. Для наплавки рабочего слоя использовали порошковую проволоку ПП-Нп-25Х5ФМС, обеспечивающую получение наплавленного металла типа инструментальной полутеплостойкой стали соответствующего состава. Для наплавки подслоя использовали две проволоки — сплошную Св-08А или порошковую ПП-Нп-12ХМФ. Порошковая проволока ПП-Нп-12ХМФ должна была обеспечить получение в наплавленном подслое стали с более высокими механическими свойствами.

На рис. 1 и 2 в качестве примера приведены данные о микроструктуре двух наплавленных образцов, определенные расчетным методом. Рассматривали два типа образцов: первый — наплавка порошковой проволокой ПП-Нп-25Х5ФМС на сталь 40Х без подслоя (рис. 1); второй — наплавка подслоя сплошной проволокой Св-08А на сталь 40Х и затем наплавка основного слоя порошковой проволокой ПП-Нп-25Х5ФМС (рис. 2).

В первом образце расчетная концентрация мартенситной фазы в наружном

износостойком слое $25X5\Phi$ MC достигает 90 %, остальное — бейнит и карбиды (рис. 1, *a*). В переходной зоне со стороны стали 40X основной структурной составляющей является бейнит (около 80 %), имеется также небольшое (до 10 %) количество мартенсита (рис. 1, *б*).

В образце, наплавленном с подслоем, структура наплавленного рабочего слоя, соответствующего инструментальной стали 25Х5ФМС, также состоит из мартенсита (около 88 %), бейнита (около 10 %) и карбидов (рис. 2, *a*). Подслой, соответствующий стали, содержащей 0,08 % углерода, имеет ферритную структуру. В переходной зоне от подслоя к основному металлу (сталь 40Х) наблюдается бейнитно-перлитная структура (рис. 2, *в*).

При проведении экспериментальных исследований микроструктуры упомянутыми выше проволоками дуговым способом под флюсом были наплавлены три типа заготовок: № 1 — наплавка порошковой проволокой ПП-Нп-25Х5ФМС на

Рис. 2. Расчетная структура образца, наплавленного с подслоем: *а* — мартенсит; *б* — бейнит; *в* — перлит; 1 — основной металл сталь 40Х; 2 — наплавленный пластичный подслой Cв-08А; 3 — наплавленный износостойкий слой 25Х5ФМС

AUTOMATICHICAGIA

ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

Таблица 1. Химический состав исследованных типов наплавленного металла

Марка проволоки	С	Mn	Si	Cr	Мо	v
ПП-Нп-25Х5ФМС	0,33	0,60	0,54	6,05	1,30	0,68
ПП-Нп-12Х1МФ	0,12	0,64	0,35	1,16	0,41	0,32
Св-08А	0,07	0,47	0,05	< 0,3	_	_

сталь 40Х без подслоя; № 2 — наплавка порошковой проволокой ПП-Нп-25Х5ФМС на сталь 40Х с подслоем, наплавленным порошковой проволокой ПП-Нп-12ХМФ; № 3 — наплавка порошковой проволокой ПП-Нп-25Х5ФМС на сталь 40Х с подслоем, наплавленным сплошной проволокой Св-08А.

Химический состав металла, наплавленного этими проволоками, приведен в табл. 1.

Из наплавленных заготовок вырезали образцы для исследования микроструктуры и твердости наплавленного металла и переходной зоны, а также для их микрорентгеноспектрального и микрорентгеноструктурного анализов.

Микроструктура наплавленного металла 25Х5ФМС и переходной зоны с основным металлом — сталью 40Х (образец № 1) представлена на рис. 3. Наплавленный износостойкий слой — сталь 25Х5ФМС имеет мартенситно-бейнитую структуру с твердостью *HV*0,5 — 3410...4120 МПа (рис. 3, *a*). Небольшое количество светлых участков в структуре можно классифицировать как остаточный аустенит. Следует отметить, что такую же структуру и твердость имеет наплавленный металл 25Х5ФМС в двух других опытных образцах. Микроструктура переходной зоны сталь 40Х+25Х5ФМС

со стороны основного металла — бейнит и небольшое количество мартенсита (рис. 3, б).

Микроструктура образца № 2 представлена на рис. 4. В переходной зоне (рис. 4, а) со стороны износостойкого наплавленного металла 25Х5ФМС наблюдается переход от мартенситно-бейнитной структуры (сталь 25Х5ФМС) к структуре сорбитообразного перлита (сталь 12ХМФ). Микротвердость со стороны стали 25Х5ФМС составляет *HV*0,5 — 2860 МПа, а со стороны подслоя 12ХМФ — *HV*0,5 — 2320...2340 МПа. Твердость подслоя 12ХМФ со стороны основного металла 40Х находится в пределах HV0,5 — 2570...2600 МПа. Такое увеличение твердости со стороны основного металла можно объяснить диффузией углерода из стали 40Х в подслой 12ХМФ. Микроструктура наплавленного подслоя 12XMФ — сорбитообразный перлит (рис. 4, б) с твердостью HV0,5 — 2570...2600 МПа.

На рис. 5 представлена микроструктура образца \mathbb{N} 3 (ПП-Нп-25Х5ФМС + Св-08А). В переходной зоне от подслоя к износостойкому наплавленному слою 25Х5ФМС образуется крупнозернистая ферритная структура (HV0,5 - 1750 МПа) с тонкодисперсными выделениями перлита по границам зерен (рис. 5, *a*). Подслой имеет чисто ферритную структуру с гораздо меньшим размером зерна (рис. 5, *б*). Твердость в этой зоне составляет HV0,5 - 1550 МПа.

Была замерена твердость по Роквеллу наплавленного металла и переходной зоны (рис. 6). В образце, наплавленном без подслоя и с подслоем 12ХМФ, наблюдается плавный переход от основ-

Рис. 3. Микроструктура (×320) наплавленного металла 25Х5ФМС (а) и переходной зоны 25Х5ФМС+40Х (б)

LEVERANTINGER

Рис. 4. Микроструктура (×320) переходной зоны 25Х5ФМС + 12ХМФ (а) и наплавленного подслоя 12ХМФ (б)

Рис. 5. Микроструктура (×320) переходной зоны 25Х5ФМС + Св-08А (а) и наплавленного подслоя Св-08А (б)

ного металла к наплавленному износостойкому слою 25Х5ФМС. При наплавке с подслоем Св-08А, как и следовало ожидать, отмечено резкое понижение твердости непосредственно в подслое.

На микрорентгеноспектральном анализаторе Сатеbax SX50 исследовали распределение основных легирующих элементов во всех трех образцах. Общая длина сканирования 150 мкм, шаг 2 мкм. На рис. 7, *а* приведено распределение хрома и молибдена при наплавке порошковой проволокой ПП-Нп-25Х5ФМС непосредственно на сталь 40Х (образец № 1). Распределение этих же элементов в зоне сплавления износостойкого слоя и подслоя в образцах № 2 и 3 приведено на рис. 7, *б* и 7, *в*, соответственно.

Анализ данных, приведенных на рис. 7, показывает, что наиболее узкая переходная зона (29,2 мкм) наблюдается при наплавке порошковой проволокой ПП-Нп-25Х5ФМС непосредственно на сталь 40Х. Переходная зона между подслоем и износостойким слоем более широкая. Она составляет около 51 мкм при подслое, наплавленном проволокой Св-08А и около 58 мкм при

Рис. 6. Твердость наплавленного металла и переходной зоны в исследованных образцах: *1* — образец без подслоя; *2* — с подслоем CB-08A; *3* — с подслоем 12X1МФ

подслое, наплавленном порошковой проволокой ПП-Нп-12XМФ (табл. 2).

Были проведены микрорентгеноструктурные исследования всех наплавленных образцов, что позволило определить их фазовый состав в количественном соотношении и сравнить его с расчетными данными (см. рис. 1 и 2). В табл. 2 приведены обобщенные данные о микроструктурном состоянии наплавленных образцов и данные о напряженном состоянии износостойкого слоя, определенном по результатам рентгеноструктурного анализа.

Если сравнить расчетные данные (см. рис. 1, 2) с данными микрорентгеноструктурного анализа (табл. 2), то, в первую очередь, следует отметить

Рис. 7. Распределение хрома и молибдена в зоне сплавления образца № 1 (a), 2 (δ), 4 (e)

EVANDER FROM WORK

ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

Таблица 2. Микроструктурное состояние наплавленных образцов

Номер образца	Микроструктура	Протяженность пе- реходной зоны со стороны наплав- ленного металла 25Х5ФМС, мкм	Фазовый состав стали 40Х, %	Фазовый состав наплавленного металла 25Х5ФМС, %	Напряжения в износостой- ком слое 25Х5ФМС, ГПа
1	Износостойкий слой — бейнитно-мартенситная смесь и остаточный аустенит; основной металл — перлитно-ферритная смесь	≈29,2	85 — перлит; 15 — феррит	92,3 — α; 7,7 — γ	-0,2
2	Износостойкий слой — бейнитно-мартенситная смесь и остаточный аустенит; подслой — сор- битообразный перлит; основной металл — пер- литно-ферритная смесь	≈58,0	87,2 — перлит; 12,8 — феррит	90,57 — α; 9,43 — γ	-0,062
3	Износостойкий слой — бейнитно-мартенситная смесь и остаточный аустенит; подслой — феррит; основной металл — перлитно-ферритная смесь	≈51,0	83 — перлит; 17 — феррит	90,32 — α; 9,68 — γ	-0,15

наличие остаточного аустенита в количестве до 10 % в наплавленном слое 25Х5ФМС. Этот факт следует учесть в уточненных расчетах напряженно-деформированного состояния образцов и соответствующих наплавленных деталей. Основной металл сталь 40Х имеет ферритно-перлитную структуру, подслой, наплавленный проволокой Св-08А — ферритную структуру, а структура подслоя, наплавленного проволокой ПП-Нп-12ХМФ — сорбитообразного перлита. Идентификация структуры и, особенно, определение количественного соотношения ее отдельных составляющих в переходных зонах вызывает значительные затруднения, тем более, что все они в данном случае, практически, относятся к α-Fe.

Определение напряжений в износостойком наплавленном слое образцов проводили на основе результатов рентгеноструктурного анализа по методике, описанной в работе [8]. Наибольшие напряжения наблюдаются в износостойком наплавленном слое в образце, наплавленном без подслоя. Несколько ниже они в образце, наплавленном с подслоем Св-08А. Минимальные напряжения были в образце № 2, в котором подслой был наплавлен порошковой проволокой ПП-Нп-12ХМФ. Качественно эти данные совпадают с расчетными данными, приведенными в работе [9].

Выводы

1. Установлено, что в зависимости от химического состава и структуры наплавленного подслоя в значительной степени меняется остаточное напряженное состояние наплавленного износостойкого слоя. В частности, наплавка подслоя порошковой проволокой ПП-Нп-12ХМФ примерно в 3 раза

снижает остаточные напряжения в рабочем износостойком слое по сравнению с наплавкой без подслоя и примерно в 2 раза по сравнению с наплавкой с подслоем Св-08А.

2. Показано, что в отличие от расчетного, в структуре наплавленного металла 25Х5ФМС экспериментальных образцов содержится до 10 % остаточного аустенита. Этот факт необходимо учитывать в расчетах напряженно-деформированного состояния и возможного ресурса эксплуатации многослойных наплавленных деталей.

- 1. *Фрумин И. И.* Автоматическая электродуговая наплавка. — Харьков: Металлургиздат, 1961. — 421 с.
- 2. Рябцев И. А., Кондратьев И. А. Механизированная электродуговая наплавка деталей металлургического оборудования. — Киев: Екотехнологія, 1999. — 62 с.
- 3. *Рябцев И. А.* Наплавка деталей машин и механизмов. Киев: Екотехнологія, 2004. 160 с.
- Расчетный метод оценки стойкости наплавленного металла при одновременном действии циклических механических и термических нагрузок / И. К. Сенченков, И. А. Рябцев, О. П. Червинко, И. И. Рябцев // Технологические системы. — 2011. — № 4. — С. 89–96.
- Попов А. А., Попова Л. Е. Справочник термиста. Изотермические и термокинетические диаграммы распада переохлажденного аустенита. — Москва-Свердловск: ГНТИ Машиностр. лит-ра, 1961. — 430 с.
- Махненко В. И. Расчетные методы исследования кинетики сварочных напряжений и деформаций. — Киев: Наук. думка, 1976. — 320 с.
- Махненко В. И. Ресурс безопасности эксплуатации сварных соединений и узлов современных конструкций. — Киев: Наук. думка, 2006. — 618 с.
- Кристаллография, рентгенография и электронная микроскопия / Я. С. Уманский, Ю. А. Скаков, А. Н. Иванов, Л. Н. Расторгуев. — М.: Металлургия, 1982. — 632 с.
- Расчет остаточных напряжений при многослойной наплавке изношенных штампов и оценка их влияния на усталостную прочность / И. К. Сенченков, И. А. Рябцев, О. П. Червинко и др. // Проблеми тертя та зношування. — 2010. — Вып. 54. — С. 67–72.

Поступила в редакцию 19.06.2013