ЛАЗЕРНОЕ И ЛАЗЕРНО-МИКРОПЛАЗМЕННОЕ ЛЕГИРОВАНИЕ ПОВЕРХНОСТИ ОБРАЗЦОВ ИЗ СТАЛИ 38ХНЗМФА

В. Д. ШЕЛЯГИН, Л. И. МАРКАШОВА, В. Ю. ХАСКИН, А. В. БЕРНАЦКИЙ, О. С. КУШНАРЕВА ИЭС им. Е. О. Патона НАНУ. 03680, г. Киев-150, ул. Боженко, 11. E-mail: office@paton.kiev.ua

Рассмотрены технологии лазерного и лазерно-микроплазменного легирования поверхностных слоев образцов из конструкционной стали 38ХНЗМФА с введением порошковых присадочных материалов на основе карбида вольфрама и хрома, способствующих повышению физико-механических характеристик изделий, изготовленных из этой стали. Методами световой микроскопии и аналитической растровой электронной микроскопии изучены структурные превращения, концентрационные изменения, причины трещинообразования в обработанных поверхностных слоях при различных режимах легирования. Показано, что склонность к трещинообразованию при лазерном и лазерно-микроплазменном легировании образцов из стали 38ХНЗМФА обусловлена прежде всего структурными (размер кристаллитов, коэффициент их формы æ) и концентрационными изменениями, связанными с перераспределениями элементов, в частности, хрома, что приводит к формированию резких зернограничных концентрационных градиентов. Отсутствие микротрещин в зоне сплавления при лазерно-микроплазменном способе легирования позволяет сделать вывод о перспективности применения данного способа для поверхностной обработки изделий, изготовленных из стали 38ХНЗМФА. Библиогр. 6, рис. 9.

Ключевые слова: конструкционная сталь, обрабатываемые поверхности, лазерное легирование, структура

Общие тенденции развития современного машиностроения заключаются в интенсификации производственных процессов за счет повышения основных технологических параметров (температуры, давления, концентраций реагирующих веществ и др.), что обусловливает повышение требований к надежности эксплуатационного оборудования, механизмов и машин. Непрерывное уменьшение массы и размеров механизмов, увеличение их мощности приводят к повышению нагрузок и напряжений в деталях, что, в свою очередь, требует разработки и перехода к новым, более надежным конструкционным материалам.

В настоящее время объемное легирование сталей становится неэкономичным из-за большого расхода дорогостоящих материалов [1]. Но уровня эксплуатационных свойств нелегированных сталей недостаточно для использования в современной промышленности. Один из выходов — применение поверхностного легирования сталей и сплавов, что позволяет получить требуемые свойства поверхности при минимальном расходе легирующих элементов.

Большинство традиционных методов поверхностного легирования как правило базируется на процессах диффузионного насыщения элементами из газовой или жидкой фазы в сочетании с термической (химико-термической) обработкой [2]. Однако применение обычно используемой химико-термической или объемной термической обработки во многих случаях недостаточно для получения заданного уровня эксплуатационных свойств.

Поэтому, учитывая проблемы, возникающие при применяемых в настоящее время технологиях упрочнения, развитие инженерии поверхности на современном этапе предполагает разработку технологических процессов нового уровня, позволяющих модифицировать поверхностный слой, радикально менять его структуру и свойства [3]. При этом для модифицирования поверхности металлов предпочтение отдается методам упрочняющей обработки, использующим в качестве теплового источника концентрированные потоки энергии: ионные, лазерные, ультразвуковые, электронный луч и другие.

Учитывая тот факт, что лазерные технологии позволяют успешно решать проблему создания материалов с заданным комплексом свойств путем целенаправленного формирования требуемой структуры по всему объему металла, появляется возможность использования лазерной обработки и для упрочнения более локальных объемов, а именно - поверхностных слоев обрабатываемого материала. Использование такого подхода лазерного легирования создает возможность формировать поверхности, характеризующиеся высоким уровнем твердости, теплостойкости, износостойкости и коррозионной стойкости. Поэтому данная работа посвящена исследованию поверхностного легирования стали и структур поверхностей, формирующихся в различных условиях облучения с

© В. Д. Шелягин, Л. И. Маркашова, В. Ю. Хаскин, А. В. Бернацкий, О. С. Кушнарева, 2014

ABROMANTAREGRAS

целью оптимизации технологических режимов лазерного легирования.

Материал и методы исследования. В ходе исследований выполняли лазерное и лазерно-микроплазменное поверхностное легирование торцевой поверхности кольцевых образцов из конструкционной стали 38ХНЗМФА. Химический состав стали 38ХНЗМФА (ГОСТ 4543–71), мас. %: 0,33...0,40 C; 0,17...0,37 Si; 0,25...0,5 Mn; 3,0...3,5 Ni; 1,2...1,5 Cr; 0,35...0,45 Mo; 0,10...0,18 V; <0,3 Cu; <0,025 S; <0,025 P.

Механические характеристики стали 38ХН3МФА при T = 20 °С (диаметр прутка 25 мм): $\sigma_{\rm B} = 1180$ МПа; $\sigma_{0,2} = 1080$ МПа; $\delta = 12$ %; $\psi = 50$ %; KCU = 780 кДж/м². При лазерном легировании использовали механическую смесь порошков фракции 0...40 мкм со следующим составом (мас. %): 46(WC–W₂C) + 46Cr + 4Al + 4Si, а при лазерно-микроплазменном легировании – 48(WC–W₂C) + 48Cr + 4Al.

Для лазерного легирования использовали Nd:YAG-лазер «DY044» производства фирмы «ROFIN-SINAR» (Германия) с длиной волны излучения $\lambda = 1,06$ мкм. Оборудование и технологии лазерно-плазменного легирования разработаны в ИЭС им. Е. О. Патона НАН Украины. На базе трехкоординатного манипулятора «Ласточка-1» был смонтирован лабораторный стенд.

Лазерное излучение передавалось по изготовленному из кварцевого стекла оптическому волокну диаметром 600 мкм и длиной 20 м. Из оптоволокна лазерное излучение поступало в коллиматор, где преобразовывалось с помощью системы оптических элементов, приобретало необходимые геометрические размеры и затем передавалось на фокусирующую кварцевую линзу диаметром 50 мм с фокусным расстоянием F = 200 мм. Обработку выполняли при варьировании мощности лазерного излучения в пределах P = 3,0...4,4 кВт, скорости обработки v = 24...45 м/ч и величины расфокусировки излучения $\Delta F = 30...45$ мм. Более детальное состояние исследуемых образцов представлено на блок-схеме (рис. 1).

Эксперименты по лазерному легированию проводили по схеме, приведенной в работе [4]. При этом неподвижный образец располагался на предметном столе, а лазерная головка закреплялась на подвижной каретке манипулятора. Конструкция лазерной головки позволяла вести обработку образца с осевой подачей лазерного излучения и присадочной порошковой смеси. Последняя транспортировалась в сопловую часть головки аргоном, а дозирование при этом осуществлялось вибрационным питателем производства ИЭС им. Е. О. Патона. Для предотвращения попадания в оптический тракт отраженного от поверхности ванны расплава излучения лазерную головку закрепляли под углом 10° к вертикальной оси.

При проведении экспериментов по лазерно-микроплазменному легированию лазерная головка и микроплазмотрон базировались на неподвижной опоре. Образцы закрепляли в захватах, установленных на подвижной каретке трехкоординатного манипулятора (рис. 2). Торцевую поверхность образца в виде кольца легировали линейно, при продольном перемещении каретки. При этом на поверхности образца образовывалась ванна расплава глубиной до 2 мм, в которую струей ламинарной аргоновой плазмы подавали механическую смесь порошков. Питание микроплазмотрона при этом осуществляли источником МПУ-4 на токе 40...50 А и напряжении около 32 В. Дистанция от сопла микроплазмотрона до зоны обработки составляла 120...150 мм. Угол сходимости осей лазерного излучения и микроплазменной струи составлял 30...45°.

НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

Рис. 2. Стенд для поверхностного лазерно-микроплазменного легирования: *1* – образец, закрепленный в захватах; *2* – защитный кожух; *3* – дозатор порошка; *4* – микроплазмотрон; *5* – лазерная фокусирующая головка

Металлографические исследования для определения общей закономерности формирования структуры поверхности легированных слоев, полученных различными методами (лазерное и лазерно-микроплазменное легирование) проводили методом световой микроскопии на «Versamet-2». Содержание элементов в твердом растворе и в отдельных включениях исследовали методом аналитической растровой электронной микроскопии на установке СЭМ-515 (фирма «Philips», Голландия).

Характер действия лазерного легирования. Проведенные исследования процесса лазерного легирования показали, что при плотностях мощности излучения $W_p = 10^5...10^6$ Вт/см² происходит активный локальный разогрев присадочного материала, способствующий образованию парогазовой фазы над поверхностью жидкой фазы (ванны расплава). При этом в последней возникают турбулентные течения, приводящие к перемешиванию основного и присадочного материалов [4]. Кроме того, перемещение лазерного луча приводит к разнице сил поверхностного натяжения в центральной и хвостовой частях ванны расплава, что в совокупности с действием давления пара и турбулентными течениями расплава способствует

Рис. 3. Микроструктура (×500) поверхностных слоев конструкционной стали 38ХНЗМФА в условиях лазерного (*a*) и лазерно-микроплазменного плегирования (δ)

сравнительно равномерному распределению присадочного материала по всей глубине ванны расплава и образованию легированного слоя.

Повышение плотности мощности лазерного излучения свыше 10⁶ Вт/см² приводит к переходу в режим кинжального проплавления, характеризуемого образованием парогазового канала в ванне расплава [4, 5]. Последнее приводит к таким нежелательным явлениям, как выгорание химических элементов присадочного материала, образованию пор и раковин (из-за схлопывания парогазовой каверны на поверхности, с образованием свищей внутри обрабатываемого слоя изза малого времени существования жидкой фазы), увеличению зоны термического влияния (ЗТВ) и переходной зоны, выбросу металла основы в легированный слой. Во избежание указанных дефектов при проведении экспериментов плотность мощности излучения в пятне нагрева не увеличивали свыше примерно (8...10)·10⁵ Вт/см².

Снижение плотности мощности излучения менее (2...4) ·10⁴ Вт/см² приводило к отсутствию однородно переплавленного слоя металла.

Структурные исследования. Металлографические исследования выполняли в различных участках каждого из образцов: легированный слой → зона сплавления → основной металл на 11 образцах (отличающиеся параметрами технологических режимов).

Лазерную обработку поверхности выполняли при мощности P = 3,5 кВт с различной скоростью легирования v = 24...45 м/ч, а также при увеличении мощности P до 4,4 кВт с v = 24...42 м/ч. Лазерно-микроплазменную обработку выполняли при постоянной мощности P = 3 кВт при отличающейся скорости легирования (изменялась от 30 до 45 м/ч) с наложением различного количества дорожек.

Лазерное легирование. Установлено, что при лазерном легировании (как при P = 3,5, так и при 4,4 кВт) толщина легированного поверхностного слоя $\delta_{n. cn}$ изменяется от 1,55 до 2,1 мм при увели-

чении скорости легирования v = 24, 30, 45 м/ч. Металл поверхностного легированного слоя имеет четко выраженную структуру протяженной формы $(h \times l)$ кристаллитов (где h — ширина, l — протяженность кристаллита), размер которых составляет в среднем $h \times l = 15 \times 85$ мкм при v = 24 м/ч, 20×80 мкм для v = 30 м/ч, при v = 45 м/ч $h \times l$ составляет 15×100 мкм (рис. 3, *a*). Таким образом, наблюдается изменение коэффициентов формы æ кристаллитов [6], значение которых в среднем: для v = 24 м/ч æ = 5, для v == 30 м/ч æ = 3, а при увеличении скоро-

Рис. 4. Концентрационные изменения железа (1), хрома (2), вольфрама (3) от внешней поверхности легированного слоя к основному металлу (сталь 38ХНЗМФА) после лазерного легирования (P = 3,5 кВт; v = 30 м/ч)

сти лазерного легирования до v = 45 м/ч коэффициент формы возрастает до æ = 6. Зафиксировано также увеличение микротвердости в легированном слое в зависимости от увеличения скорости (от 24 до 45 м/ч) легирования при P = 3,5 кВт в среднем на 30...36 %.

Со стороны стали З8ХНЗМФА (основного металла) непосредственно у линии сплавления наблюдается зона термического влияния (ЗТВ), ширина которой увеличивается от 1,30 до 1,65 мм с возрастанием микротвердости в этой зоне при увеличении скорости легирования соответственно от v = 24 до 45 м/ч. При этом следует отметить, что если в основном металле наблюдается структурная смесь из сорбита и мартенсита, то структура металла ЗТВ имеет мартенситную структуру для всех рассматриваемых случаев скоростей легирования. Кроме того, исследованы концентрационные изменения в обработанных поверхностях, которые показали, что наиболее равномерное насыщение поверхностного слоя легирующими элементами наблюдается при скорости обработки v = 30 м/ч и мощности излучения *P* = 3,5 кВт. В этом случае концентрация элементов составляет, мас. %: 70...75 Fe, 12...14 Cr, 7...8 W без резкого градиента концентрационных изменений в зоне перехода (протяженность которой не превышает 25 мкм) от линии сплавления в направлении внешней поверхности легированного слоя (рис. 4).

Помимо исследований концентрационных изменений проведены также исследования и характера включений в обрабатываемых поверхностях. Показано, что в случае лазерного легирования поверхностного слоя на всех скоростях легирования наблюдаются крупные включения (рис. 5) в количестве до 1 % и размером до 25 мкм. Данные включения отличаются высоким содержанием вольфрама — до 95...97 %, и, очевидно, являются частицами WC–W₂C, нерастворенными в процессе легирования.

В результате следующего этапа работы в направлении исследования наличия, характера трещин и зон их распределения в легированных поверхностных слоях при P = 3.5 кВт установлено, что их максимальный размер (длина до 500 мкм) и количество (до 10 %) наблюдается в случае скорости легирования v = 45 м/ч, а при минимальной скорости v = 24 м/ч длина распространения трещин несколько уменьшается и составляет 50...450 мкм при их количестве до 2 % (рис. 6, *a*). Следует отметить, что в областях с микротрещинами увеличивается содержание хрома до 20...26 %, концентрация вольфрама при этом составляет порядка 2...5 %. На карте концентрационного распределения химических элементов в центральной зоне легированного слоя при наличии трещин достаточно четко просматривается повышенное содержание хрома (рис. 6, δ). Однако в условиях средних скоростей (при v = 30 м/ч) микротрещины практически отсутствуют, что свидетельствует об оптимальном структурном состоянии легированного слоя с точки зрения устойчивости к образованию трещин.

При увеличении мощности излучения до P = 4,4 кВт толщина легированного слоя уменьшается от 2,70 до 1,50 мм с повышением скорости обработки от v = 24 до 42 м/ч. Металл легированного слоя имеет четко выраженную кристаллическую структуру (как и в случае легирования при P = 3,5 кВт), имеющую большую протяженность (вытянутость) при среднем коэффициенте формы a = 10 для всех случаев скорости обработки, что примерно в 2 раза выше по сравнению со структурными изменениями, наблюдаемыми при легировании с мощностью излучения P = 3,5 кВт.

В зависимости от увеличения скорости легирования при P = 4,4 кВт наблюдается также уменьше-

A DIRACOULT PARAMAN

НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

Рис. 5. Микроструктура поверхностного слоя с включениями WC–W $_2$ С в случае лазерного легирования (a— $\times 3100,$ б— $\times 1200)$

ние микротвердости легированного слоя в среднем до 26 %. При этом во всех случаях используемых скоростей легирования градиент по микротвердости (ΔHV) в зоне линии сплавления (т. е. ΔHV между легированным слоем и основным металлом) уменьшается при увеличении скорости лазерного легирования от v = 24 до 36 м/ч. Однако в случае максимальной скорости v = 42 м/ч наблюдается резкое увеличение градиента микротвердости.

Исследования концентрационных изменений по переходной зоне, размер которой в случае P = 4,4 кВт уменьшается от 60 до 40 мкм (при изменении скорости от 24 до 42 м/ч) показали незначительные изменения концентрации железа при переходе: легированный слой \rightarrow зона сплав-

Рис. 6. Микроструктура легированного слоя с микротрещиной в центральной зоне (*a* — ×1500), распределение хрома вдоль данной трещины (*б* — ×1500) и микроструктура легированного слоя с микротрещиной в области линии сплавления (*в* — ×1200) в случае применения лазерного метода обработки

ления \rightarrow основной металл. Распределение концентрации хрома варьируется от 8 до 13 % в легированном слое при увеличении скорости v с постепенным уменьшением примерно до 8 % в переходной зоне — при приближении к линии сплавления. Распределение вольфрама также меняется: от 2 до 5 % в легированном слое в случае увеличения скорости лазерного легирования, а при переходе к линии сплавления его концентрация в переходной зоне постепенно уменьшается примерно в 2 раза.

Что касается наличия трещин и факторов, связанных с трещинообразованием, то исследованиями установлено, что во всех образцах, полученных при мощности излучения P = 4,4 кВт наблюдается наличие микротрещин (во всех рассмотренных участках), протяженность *l* которых уменьшается от 500 до 40 мкм при увеличении скорости обработки (рис. 6). При этом в зоне образования трещин отмечается повышение концентрации хрома с изменением от 17 до 26 % с увеличением скорости легирования v, а содержание вольфрама при всех режимах остается на уровне 1,0...4,5 %.

Лазерно-микроплазменное легирование. Относительно структурно-фазовых, концентрационных изменений и условий трещинообразования

в поверхностях стали 38ХН3МФА, обработанных комбинированным лазерно-микроплазменным источником с использованием постоянной мощности лазерного излучения P = 3 кВт, но с различной скоростью легирования (от 30 до 45 м/ч) при наложении различного количества дорожек установлено следующее.

Толщина легированных слоев, полученных лазерно-микроплазменным методом, уменьшается от 1,75 до 1,58 мм при увеличении скорости легирования от 30 до 45 м/ч. Металл поверхностно-го легированного слоя, также как и при лазерной обработке, имеет четко выраженную кристаллическую структуру, но отличается большей равноосностью и мелкозернистостью кристаллитов (рис. 3, δ), а коэффициент их формы увеличивается от $\mathfrak{x} = 4$ при v = 30 м/ч до $\mathfrak{x} = 8$ при v = 45 м/ч.

Следует отметить, что ширина области ЗТВ, формирующейся у линии сплавления со стороны стали 38ХНЗМ-ФА при возрастании скорости легирования от 30 до 45 м/ч уменьшается от 1,65 до 1,25 мм в отличие от лазерной обра-

ботки, где эта область наоборот увеличивается. Микроструктура металла ЗТВ, как и при лазерной обработке, в основном мартенситная, но характеризуется уменьшением микротвердости на 20...30 % в условиях увеличения скорости легирования и наложения нескольких дорожек с перекрытием.

Исследования концентрационных изменений показали незначительное изменение по железу во всех исследуемых областях (от внешней поверхности до основного металла). При этом распределение хрома в легированном слое в зависимости от увеличения скорости легирования и количества наложения дорожек изменяется от 6 до 18 %, а распределение вольфрама

в легированном слое изменяется от 2...3 до 8 % соответственно.

В легированном слое, полученном лазерно-микроплазменным методом, при всех скоростях легирования (как и при лазерном легировании) наблюдается наличие включений, объемная доля которых возрастает при увеличении скорости легирования *v* от 30 до 45 м/ч соответственно с 1 до 10 %. Данные включения имеют размер 50...230 мкм и состоят в основном из WC–W₂C с содержанием вольфрама в среднем 97 % (рис. 7).

Исследованием также установлено, что и в условиях лазерно-микроплазменного легирования наблюдаются микротрещины (объемная доля $V_{\rm д}$ от 3 до 30 %). Однако в отличие от режимов лазерного легирования такие дефекты наблюдаются только в легированном слое по границам кристаллитов (рис. 8), а в зоне линии сплавления практически отсутствуют, что свидетельствует о хорошем сцеплении легированного слоя со сталью 38ХНЗМФА. В областях, где образуются трещины, зафиксировано увеличение содержания хрома до 12...20 %. Следует особо подчеркнуть, что в случае лазерно-микроплазменного легирования практически отсутствуют (рис. 9).

НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

Рис. 7. Микроструктура (×1010) поверхностного слоя с включениями WC–W₂C в случае лазерно-микроплазменного легирования: a — внешний вид включений; δ — карты распределения вольфрама в данных включениях

Таким образом на данном этапе исследования установлено, что наиболее оптимальные структурные параметры легированного слоя формируются при режимах P = 3,5 кВт; v = 30 м/ч — лазерное легирование и P = 3 кВт; v = 30 м/ч — лазерно-микроплазменное легирование (наложение одной дорожки).

Рис. 8. Микроструктура (×1550) поверхностного слоя с микротрещиной после лазерно-микроплазменного легирования

Рис. 9. Сравнительный график структурных параметров (кристаллиты – размер, коэффициент формы) и микротрещин (длина, объемная доля) в легированном слое после лазерно-микроплазменного способа обработки: I - P = 3 кВт, v = 30 м/ч (наложение одной дорожки); II - P = 3 кВт, v = 30 м/ч (наложение четырех дорожек); III - P = 3 кВт, v = 45 м/ч (наложение трех дорожек)

ИАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ

Выводы

1. Склонность к трещинообразованию при лазерном и лазерно-микроплазменном легировании образцов из стали 38ХНЗМФА обусловлена прежде всего структурными (размер кристаллитов, коэффициент их формы æ) и концентрационными изменениями, связанными с перераспределениями элементов, в частности, хрома, что приводит к формированию резких зернограничных концентрационных градиентов.

2. Отсутствие микротрещин в зоне сплавления при лазерно-микроплазменном способе легирования позволяет сделать вывод о перспективности применения данного способа поверхностной обработки для изделий, изготовленных из стали 38ХНЗМФА.

3. На данном этапе исследования установлено, что наиболее оптимальные структурные параметры легированного слоя формируются при режимах P = 3,5 кВт; v = 30 м/ч — лазерное легирование и P = 3 кВт; v = 30 м/ч (один проход) — лазерно-плазменное легирование.

- 1. *Исаев Г. П.* Лазерно-ионное легирование металлов и сплавов // Вестн. Камчатского ГТУ. 2002. № 1. С. 160–164.
- Лахтин Ю. М., Леонтьева В. П. Материаловедение: Учеб. пособие для вузов. – М.: Машиностроение, 1980. – 493 с.
- 3. Петрова Л. Г. Прикладное применение моделей химико-термической обработки для разработки технологий поверхностного упрочнения // Вестн. Харьковского нац. автодор. ун-та. – 2010. – № 51. – С. 26–34.
- Григорьянц А. Г. Основы лазерной обработки материалов – М.: Машиностроение, 1989. – 304 с.
- Григорьянц А. Г., Шиганов И. Н., Мисюров А. И. Технологические процессы лазерной обработки: Учеб. пособие для вузов // Под ред. А. Г. Григорьянца – М.: МГТУ им. Н. Э. Баумана, 2006. – 664 с.
- 6. *Грабин В. Ф.* Металловедение сварки плавлением. Киев: Наук. думка, 1982. 415 с.

Поступила в редакцию 30.09.2013

8–12 июня 2014

Варна, Болгария

Организаторы:

- Болгарская академия наук
- Софийский центр по электронно-лучевой и плазменным технологиям
- Болгарское общество электроники, электротехники и телекоммуникации

Контакты: katia@van-computers.com, eliglorg@abv.bg тел. (+3592) 875 07 57; (+3592) 979 59 00; факс: (+3592) 975 32 01; http: //www.ebt2014@abv.bg

