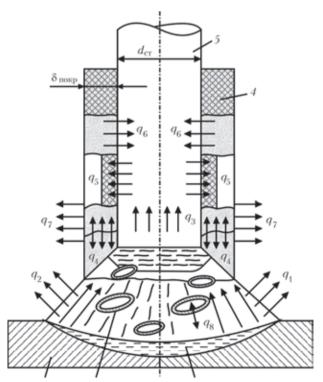
УДК 621.791.01:536.2

## НАГРЕВ И ПЛАВЛЕНИЕ ЭЛЕКТРОДОВ С ЭКЗОТЕРМИЧЕСКОЙ СМЕСЬЮ В ПОКРЫТИИ

## А. Ф. ВЛАСОВ, Н. А. МАКАРЕНКО, А. М. КУЩИЙ

Донбасская гос. машиностроительная академия 84313, г. Краматорск Донецкой обл., ул. Шкадинова, 72. E-mail: dgma@dgma.donetsk.ua


Известно, что повысить производительность ручной электродуговой сварки возможно введением в состав электродного покрытия экзотермических смесей. При этом недостаточно изучено распределение тепла между электродом и изделием. В работе исследованы тепловые характеристики нагрева и плавления электродов с различным содержанием экзотермической смеси в покрытии. Показано, что введение смеси в количестве до 53,4 мас. % приводит к увеличению коэффициента расплавления стержня с 8,7 до 11,6 г/(А·ч), коэффициента наплавки с 8,1 до 13 г/(А·ч), а также росту эффективного КПД нагрева основного металла. Библиогр. 10, табл. 2, рис. 1.

Ключевые слова: дугова сварка, покрытые электроды, экзотермическая смесь, нагрев и плавление электрода, тепловые характеристики

Повышение производительности процессов и изыскание новых видов сырья для изготовления сварочных и наплавочных материалов является одной из главных задач, стоящих перед разработчиками. Одним из направлений решения этой задачи может быть использование эффекта экзотермических реакций при введении в состав используемых материалов экзотермических смесей в виде соответствующих окислителей (окалины, гематита, марганцевой руды) и раскислителей (ферротитана, ферросилиция, алюминиевого порошка) [1-4], при нагреве и плавлении которых экзотермический процесс протекает до расплавления электродного стержня. При недостаточном количестве в покрытии электродов оксидов железа и элементов-раскислителей экзотермический процесс протекает на стадии формирования и переноса капли. Проведенные исследования [5] показали, что при изменении от 35 до 64 % содержания экзотермической смеси в покрытии электродов, состоящей из окалины и алюминиевого порошка, прирост температуры составляет 1280 °C и является достаточным для полного расплавления покрытия. Однако исследователями до настоящего времени недостаточно изучено распределение тепла между электродом и изделием, выделяемого при экзотермической реакции.

Целью данной работы является исследование влияния количества экзотермической смеси в покрытии электродов на тепловые характеристики их плавления.

Для исследования изготавливали электроды, содержащие в покрытии мрамор, плавиковый шпат, рутиловый концентрат, ферромарганец, ферротитан, железную окалину и алюминиевый порошок. При диаметре стержня 5 мм и различном содержание в покрытии экзотермической смеси коэффициент массы покрытия был постоянным. Этими электродами на пластины размером  $10\times80\times120$  мм с хвостовиками, предварительно установленными на теплоизолированную подставку, производили наплавку валиков на постоянном токе обратной полярности. В качестве источника питания использовали сварочный преобразователь ПС-500 с балластными реостатами типа РБ-300. Наплавку каждого образца проводили в течение 20 с. Время



Модель нагрева и плавления электрода с экзотермической смесью в покрытии: I — основной металл; 2 — капля электродного металла; 3 — сварочная ванна; 4 — покрытие; 5 — стержень; обозначения — см. текст

© А. Ф. Власов, Н. А. Макаренко, А. М. Кущий, 2014

ABROMATIFICANA

плавления электрода устанавливали секундомером, средние значения сварочного тока и напряжения на дуге определяли по самопишущим приборам, а температуру нагрева воды — термометром с точностью до 0,05 °C. Для каждого состава электродов выполняли по 3...5 замеров.

Как показано на рис. 1, в процессе нагрева электрода током тепло, выделяемое в металлическом стержне диаметром  $d_{\rm cr}$ , расходуется на повышение температуры стержня  $(q_3)$  и слоя покрытия  $(q_5)$  и передается через боковую поверхность в окружающую среду  $(q_7)$ . На торец электрода действует тепловой поток дуги  $q_1$ , теплота излучения и конвективной теплопередачи  $q_2$ . При температуре 1000 °С (при содержании в покрытии электродов свыше 35 % экзотермической смеси) протекает экзотермическая реакция с выделением теплоты  $q_4$ , одна часть которой расходуется на нагрев и плавление покрытия  $(q_5)$ , а другая передается стержню электрода  $(q_6)$ . В этом процессе имеет значение теплота от конвективной теплопередачи через боковую поверхность электрода в окружающую среду  $(q_7)$  и теплота, теряемая с каплями расплавленного металла  $(q_{s})$ .

Мгновенный тепловой баланс

$$Q=q_1+q_2+q_3+q_4+q_5+q_6+q_7+q_8$$
 или 
$$Q=q_1+q_2+q_3+q_4=q_5+q_6+q_7+q_8.$$

Электрод нагревается от трех источников. Во-первых, это сосредоточенный источник — сварочная дуга, тепло которой вводится через пятно нагрева на рабочем торце электрода  $(q_1)$ . Во-вторых, это теплота излучения и конвективной теплопередачи  $(q_2)$  и распределенный по объему источник — тепло, выделяемое электрическим током по закону Ленца—Джоуля по всей длине электродного стержня от токоподводящего контакта до дуги  $(q_3)$ . В-третьих, это тепло, выделяемое при протекании экзотермической реакции  $(q_4)$ .

Было исследовано распределение температур T(x) в стержне электрода при нагреве источником тепла на торце в зависимости от количества экзотермической смеси в покрытии электрода. Источник тепла на торце электрода можно рассматривать как подвижный, перемещающийся со скоростью плавления электрода. Используя урав-

нение предельного состояния процесса распространения тепла от подвижного плоского источника в стержне в области перед источником (при начальном коэффициенте температуроотдачи для стержня b=0), можно получить распределение температур T(x) в стержне электрода при нагреве источником на торце. Подставив заданные величины в известное уравнение [6] при  $x \ge 0$  и  $t \to \infty$ , получаем уравнение:

$$T - T_{x} = (T_{x} - T_{x})e^{wx/a},$$

где  $T_{\rm T}$  — температура подогрева электродного стержня током , °C; x — расстояние от торца плавящегося электрода, температура конца которого равна средней температуре капель  $T_{\rm K}$ , см; w — скорость плавления электрода, см/с.

Температуру капель, отделяющихся от плавящегося электрода, определяли по известной формуле [7] с учетом данных работы [8] по среднему значению энтальпии капель ( $\Delta H = 1850~\rm{Д} \rm{ж/r}$ ) при расплавлении проволоки Св-08А и  $I_{\rm cb} = 290~\rm{A}$  (полярность обратная):

$$T_{\text{\kappa.cp}} = 1798 + (\Delta H - 1330)/0,92 = 1798 + 520/0,92 = 565 + 1798 = 2363 \text{ K} = 2090 \text{ °C}.$$

В табл. 1 приведены данные, характеризующие влияние количества экзотермической смеси в покрытии электродов на температуру участка x, нагреваемого дугой при  $T_{\rm k}=2100~{\rm ^{\circ}C};\ T_{\rm T}=20~{\rm ^{\circ}C};\ w=0,475...0,645~{\rm cm/c};\ a=0,08~{\rm cm^{2}/c}.$  Температура  $1000~{\rm ^{\circ}C},$  при которой эффективно протекает экзотермическая реакция, достигается на расстоянии около 1 мм от торца электрода.

Была определена температура нагрева покрытого электрода ЭТ-2 [9] диаметром 5 мм через 60 с после начала горения дуги на постоянном токе 290 А. Начальная температура электрода  $T_0$  = =20 °C. Расчет выполняли с учетом научных рекомендаций [6] следующим образом:

плотность тока в электроде

$$j = \frac{4I}{\pi d^2} = \frac{4 \cdot 290}{\pi \cdot 0.5^2} = 14.8 \text{ A/mm}^2,$$

где I — сварочный ток, A; d — диаметр стержня, см;

коэффициенты  $\omega_0=2,4\cdot 10^{-2}j^2=2,4\cdot 10^{-2}\cdot 14,8^2=5,26\ \mathrm{град/c};$ 

Таблица 1. Температура участка x электрода, нагреваемого дугой, и количество экзотермической смеси в покрытии при различной скорости плавления электрода

| Длина<br>участка <i>x</i> , см | Количество экзотермической смеси (%) при $T$ (°C) и $w$ (см/с) |       |       |      |       |      |       |      |       |  |
|--------------------------------|----------------------------------------------------------------|-------|-------|------|-------|------|-------|------|-------|--|
|                                | 0                                                              | 10,0  | 17,5  | 26,2 | 35,2  | 42,5 | 44,4  | 47,5 | 53,4  |  |
|                                | 0,475                                                          | 0,505 | 0,525 | 0,55 | 0,575 | 0,6  | 0,615 | 0,63 | 0,645 |  |
| 0,09                           | 1230                                                           | 1190  | 1164  | 1131 | 1099  | 1069 | 1051  | 1034 | 1017  |  |
| 0,1                            | 1159                                                           | 1117  | 1090  | 1056 | 1023  | 992  | 973   | 955  | 938   |  |
| 0,2                            | 640                                                            | 595   | 565   | 531  | 499   | 469  | 451   | 435  | 419   |  |
| 0,5                            | 108                                                            | 89,5  | 79    | 67,5 | 57,7  | 49,4 | 44,1  | 41   | 37,3  |  |
| 1,0                            | 5,6                                                            | 3,8   | 2,97  | 2,3  | 1,6   | 1,2  | 0,96  | 0,8  | 0,7   |  |

| Габлица 2. Экспериментальные и расчетные значения характеристик плавления электродов с экзотермической |
|--------------------------------------------------------------------------------------------------------|
| месью в покрытии при $I_{\rm cs} = 290~{ m A}$                                                         |

| Показатель                           | Количество экзотермической смеси, % |       |       |       |       |       |       |       |       |  |
|--------------------------------------|-------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
|                                      | 0                                   | 10,5  | 17,5  | 26,2  | 35,2  | 42,5  | 44,4  | 47,5  | 53,4  |  |
| $\alpha_{\text{пл.ст}}$ , г/(А·ч)    | 8,7                                 | 9,4   | 9,7   | 10,2  | 10,4  | 10,9  | 11,2  | 11,4  | 11,6  |  |
| $\alpha_{_{\rm H}}$ , г/(А·ч)        | 8,1                                 | 9,1   | 9,7   | 10    | 10,9  | 11,4  | 12    | 12,2  | 13    |  |
| $U_{\mathrm{A}}$ , B                 | 25                                  | 25,7  | 26    | 26,5  | 27    | 27,3  | 27,5  | 27,7  | 28    |  |
| $Q_{\scriptscriptstyle  m J}$ , Дж/с | 7250                                | 7453  | 7540  | 7685  | 7830  | 7917  | 7975  | 8033  | 8120  |  |
| $Q_{_{\mathrm{XИМ}}}$ , Дж/с         | 0                                   | 45,2  | 138,7 | 274,6 | 442,5 | 619,5 | 701,6 | 777,3 | 926,5 |  |
| w, см/с                              | 0,475                               | 0,52  | 0,525 | 0,55  | 0,58  | 0,6   | 0,615 | 0,63  | 0,645 |  |
| $v_{\rm пл.покр}$ , г/с              | 0,40                                | 0,42  | 0,44  | 0,47  | 0,50  | 0,54  | 0,56  | 0,58  | 0,59  |  |
| $Q_{\rm кал}$ , Дж/с                 | 5220                                | 5610  | 5716  | 6046  | 6405  | 6700  | 6886  | 7090  | 7373  |  |
| $m_{_{ m IIIJ}}$ , $\Gamma$          | 7,5                                 | 7,43  | 7,37  | 7,3   | 6,7   | 6,4   | 6,2   | 6,3   | 6,3   |  |
| <i>т</i> г                           | 14                                  | 15    | 15,8  | 16,7  | 17,1  | 18,5  | 19,2  | 19,6  | 20    |  |
| $m_{_{\mathrm{H.M}}}$ , $\Gamma$     | 10,5                                | 12,1  | 13,5  | 15    | 17,5  | 18,5  | 19,5  | 20    | 20,8  |  |
| $\eta_{\scriptscriptstyle 9}$        | 0,28                                | 0,3   | 0,315 | 0,34  | 0,365 | 0,385 | 0,392 | 0,405 | 0,415 |  |
| $\eta_{\scriptscriptstyle O.M}$      | 0,715                               | 0,735 | 0,745 | 0,76  | 0,773 | 0,79  | 0,795 | 0,805 | 0,815 |  |
| <i>Q</i> <sub>2</sub> , Дж/с         | 2030                                | 2236  | 2375  | 2613  | 2858  | 3048  | 3126  | 3253  | 3370  |  |

$$b0 = \frac{0.96 \cdot 10^{-2}}{d} = \frac{0.96 \cdot 10^{-2}}{5} = 0.192 \cdot 10^{-2} \quad 1/\text{град};$$

$$nt = [5 \cdot 10^{-3} \cdot 5,26 + 0.192 \cdot 10^{-2}(1 + 5 \cdot 10^{-3} \cdot 20)] \cdot 60 = 1.68;$$

$$\beta(\omega_0/b_0 + T_0) = 5 \cdot 10^{-3}(5,26/0.192 \cdot 10^{-2}) + 20) = 13.8.$$

По известной номограмме [6] коэффициенты  $\beta T = 3.5$ ;  $\beta = 5 \cdot 10^{-3}$  1/град. Тогда максимальная температура подогрева исследуемых электродов оптимальным током составляет  $T = 3.5/5 \cdot 10^{-3} = 700$  °C.

Тепловой эффект экзотермической реакции от взаимодействия элементов-раскислителей с оксидом железа определяли по известному уравнению [10]

$$Q_{_{\text{XHM}}} = \sum_{i=1}^{i=k} \frac{G_{_{\text{p.ct}}}}{t} K_m \frac{Q_{_{i\,\text{3.c}}}}{100} q_{_{i\,\text{3.c}}},$$

где  $G_{\mathrm{p.cr}}$  — количество расплавленного стержня, г;  $K_m$  — коэффициент массы покрытия;  $Q_{i\ \mathrm{p.c}}$  — количество экзотермической смеси в покрытии электрода при взаимодействии i-го элемента-раскислителя (Al, Ti, Si, Mn) с оксидом железа, %;  $q_{i\ \mathrm{p.c}}$  — тепловой эффект экзотермической смеси при взаимодействии 1 % закиси железа с элементами-раскислителями, Дж/с.

Показатели влияния количества экзотермической смеси в покрытии электродов на характеристики их плавления приведены в табл. 2.

Полученные результаты показали, что введение в покрытие электродов экзотермической смеси увеличивает количество расплавленного стержня в пределах 14-20 г и покрытия от 8 до 11,8 г при постоянном коэффициенте массы покрытия. Это происходит в основном за счет теплоты, выделяющейся при протекании экзотермической реакции, и снижения затрат теплоты на плавление покрытия вследствие соответствующего уменьшения содержания газошлакообразующей части покрытия и увеличения металлической составляющей. Введение в состав покрытия до 53,4 % экзотермической смеси изменяет коэффициент нагрева электрода 0,280 до 0,415, причем изменение носит прямо пропорциональный характер. Увеличение количества наплавленного металла в пределах 10,5...20,8 г при почти одинаковом количестве шлака на пластине показывает, что дополнительный нагрев пластины происходит в основном за счет увеличения количества электродного металла, переносимого за одно и то же время. Электроды с экзотермической смесью в покрытии максимально эффективно могут использоваться для сварочных и наплавочных работ, при выполнении которых необходим предварительный и сопутствующий нагрев и замедленное охлаждение.



## Выводы

- 1. Введение в покрытие электрода до 53,4 % экзотермической смеси увеличивает коэффициент расплавления стержня ( $\alpha_{\text{пл.ст}} = 8,7....11,6 \ \Gamma/(\text{А·ч})$ ) и наплавки ( $\alpha_{\text{н}} = 8,1...13,0 \ \Gamma/(\text{А·ч})$ ), эффективные КПД нагрева основного металла ( $\eta_{\text{о.м}} = 0,715...0,815$ ) и электрода ( $\eta_{\text{а}} = 0,280...0,415$ ).
- 2. Введение в покрытие электрода экзотермической смеси повышает скорость расплавления электродов за счет увеличения тепловой мощности дуги; тепла, выделяющегося при протекании экзотермической реакции; снижения затрат на плавление газошлакообразующей части покрытия; улучшения технологических характеристик дуги.
- 3. Установлено, что максимальная температура подогрева исследуемых электродов проходящим оптимальным током составляет 700 °C.
- 4. Температура 1000 °С, при которой эффективно протекает экзотермическая реакция, была получена на расстоянии около 1 мм от торца электрода.

- Карпенко В. М., Власов А. Ф., Билык Г. Б. Показатели плавления сварочных электродов с экзотермической смесью в покрытии // Свароч. пр-во. 1980. № 9. С. 23-25.
- 2. *Иоффе И. С.* Влияние титанотермитной смеси, входящей в электродное покрытие, на повышение производительности сварки // Там же. 1980. № 3. С. 26–28.
- Зареченский А. В. и др. Особенности плавления порошковых лент с термитными смесями // Там же. 1985. № 8. С. 39–41.
- 4. *Чигарев В. В., Зареченский Д. А., Белик А. Г.* Особенности плавления порошковых лент с экзотермическими смесями в наполнителе // Автомат. сварка. 2007. № 2. С. 53–55.
- 5. *Власов А. Ф., Карпенко В. М., Лещенко А. И.* Экспериментальное определение экзотермического процесса, протекающего при нагреве и плавлении электродов // Вісник ДДМА. 2006. 4, № 2. С. 65–68.
- Теоретические основы сварки / Под ред. В. В. Фролова. М.: Высш. шк., 1970. – 592 с.
- Ando K., Nishiguchi K. Mechanism of formation of pencil point-like wire tip in MIG welding // IIW Doc. 212-156-68 –69.
- 8. *Ерохин А. А.* Основы сварки плавленим. М.: Машиностроение, 1973. 448 с.
- 9. *А. с. 737175 СССР.* МКИ В 23К, 35/36. Состав электродного покрытия / А. Ф. Власов, Ю. Н. Опарин, В. М. Белая, А. А. Перепелица. Заявл. 10.11.77. Опубл.30.05.80; Бюл. № 20.
- 10. Власов А. Ф., Кущий А. М. Технологические характеристики электродов с экзотермической смесью в покрытии для наплавки инструментальных сталей // Свароч. пр-во. -2011.-N 4. С. 10–15.

Поступила в редакцию 16.04.2014

## издательский дом «патон»

www.patonpublishinghouse.com



ЭЛЕКТРОННОЛУЧЕВАЯ СВАРКА БУРОВЫХ ДОЛОТ. / О. К. Назаренко, В. М. Нестеренков, А. А. Бондарев, Л. А. Кравчук, Ю. А. Архангельский. – Киев: ИЭС им. Е. О. Патона НАН Украины, 2012. – 116 стр. Мягкий переплет, 165×235 мм.

Представлены результаты теоретических и экспериментальных исследований свариваемости высокопрочных среднелегированных сталей 14XH3A, 40XH и 14XH3MA, из которых традиционно изготавливаются буровые долота, а также анализа влияния основных параметров режима ЭЛС, технологических приемов, развертки пучка и модифицирующих вставок, применяемых для управления структурообразованием, предупреждения кристаллизационного растрескивания и повышения прочностных характеристик сварных соединений. Приведены технические характеристики разработанного оборудования и описаны компьютерные технологические программы ЭЛС с применением модификаторов металла шва. Книга предназначена для инженерно-технических работников машиностроительных предприятий и институтов, специализирующихся в области высоких технологий и современного сварочного оборудования.

Заказы на книгу просьба направлять в редакцию журнала «Автоматическая сварка»