УДК 621.791.053.66

ВЛИЯНИЕ РАЗМЕРОВ ВЫПУКЛОСТИ ШВА НА НАПРЯЖЕННОЕ СОСТОЯНИЕ СТЫКОВОГО СОЕДИНЕНИЯ ПРИ РАСТЯЖЕНИИ

Г. В. ЕРМОЛАЕВ, В. А. МАРТЫНЕНКО, И. В. МАРУНИЧ

Нац. ун-т кораблестроения им. Адмирала Макарова. 54025, г. Николаев, просп. Героев Сталинграда, 9. E-mail: welding@nuos.edu.ua

С целью выяснения возможности компенсации пониженной прочности металла шва увеличением размеров выпуклости стыкового соединения и установления зависимости необходимой высоты выпуклости от соотношения прочности шва и основного металла проведено исследование уровня и характера распределения напряжений в стыковых соединениях при нагружении их растяжением при различных размерах выпуклости. Исследования проводили методом компьютерного моделирования на стыковых соединениях видов С25 и С21. Варьировались высота и ширина выпуклости при постоянной толщине основного металла. Форма выпуклости принималась в виде дуги. Изучали поля всех составляющих напряжений, а также их эпюры в различных сечениях шва. Полученные величины коэффициентов концентрации (1,8...2,3) при изменении размеров выпуклости в довольно широких пределах подтвердили адекватность моделирования. Вместе с тем показано, что наличие выпуклости в симметричном соединении вида С25 несколько снижает уровень максимальных растягивающих и эквивалентных напряжений внутри металла шва, что дает возможность компенсировать снижение его прочности по сравнению с основным металлом, но это снижение непропорционально увеличению площади сечения. Получено выражение, позволяющее рассчитать необходимую величину выпуклости в соединении в С25 вида при известной степени снижения прочности наплавленного металла по сравнению с основным. Наличие выпуклостей и их размер в несимметричном соединении вида С21 практически не влияет на уровень максимальных эквивалентных напряжений в сечении по оси шва, поэтому компенсировать пониженную прочность металла шва увеличением выпуклостей в таком соединении невозможно. Полученные результаты могут быть использованы при проектировании стыковых соединений материалов, в частности, для соединений высокопрочных сталей, выполняемых аустенитными материалами, для которых существует проблема обеспечения равнопрочности металла шва и основного металла. Библиогр. 12, табл. 4, рис. 7.

Ключевые слова: стыковые соединения, распределение напряжений, размеры выпуклости, статическое нагружение

Классическая форма поперечного сечения стыкового соединения, выполненного дуговыми методами сварки, предполагает наличие выпуклости шва, размеры которой регламентируются всеми стандартами на сварные соединения [1–3]. Долгое время эту выпуклость называли усилением шва, так как предполагалось, что увеличение толщины металла на оси шва может компенсировать возможное снижение его прочности по сравнению с основным металлом.

С развитием и совершенствованием технологии сварки и сварочных материалов получение металла шва, равнопрочного основному, для большинства материалов, применяемых в сварных конструкциях, перестало быть проблемой. Соответственно и требования к размерам выпуклости шва в большинстве случаев остались чисто символическими. В ныне действующих межгосударственных стандартах (ГОСТ) высота выпуклости практически для всех толщин установлена в интервале от 1,5 до 4 мм при ширине от 5...6 до 60 мм [1–3].

Однако для некоторых материалов, например, высокопрочных сталей, проблема получения швов, равнопрочных с основным металлом, остается актуальной и в настоящее время. При невозможности получения равнопрочного металла шва, например, при использовании сварочных материалов аустенитного класса, приходится идти по пути снижения допускаемой нагрузки или напряжений в нем за счет увеличения высоты выпуклости. Именно последнее предусматривается соответствующими техническими требованиями к сварным стыковым соединениям высокопрочных сталей, применяемых при постройке корпусов военных кораблей и подводных лодок. Но при этом возникает другая проблема — концентрация напряжений в точке перехода от основного металла к металлу шва. Возможно поэтому в ныне действующих стандартах на сварочную терминологию термин «усиление» отнесен к недопустимым и заменен термином «выпуклость» [4, 5].

Анализ напряженного состояния соединения при нагружении растяжением методами теории упругости [6, 7] показал, что при наличии выпу-

© Г. В. Ермолаев, В. А. Мартыненко, И. В. Марунич, 2014

Таблица 1. Варианты исследованных моделей соединений вида С25

**						70 11
Номер	Высота выпу-	Ширина выпу-	Относительная	Относительная	Полное сече-	Коэффициент усиления
варианта	клости а, мм	клости b , мм	высота а/b	ширина <i>b/s</i>	ние $s+2a$	(s+2a)/s
1	2,5	23	0,11	0,77	35	1,17
2	4,5	43	0,10	1,43	39	1,30
3	7,5	73	0,10	2,43	45	1,50
4	2,5	25	0,10	0,83	35	1,17
5	4,5	45	0,10	1,50	39	1,30
6	7,5	75	0,10	2,50	45	1,50
7	2,5	29	0,09	0,97	35	1,17
8	4,5	49	0,09	1,63	39	1,30
9	7,5	79	0,10	2,63	45	1,50
10	10,0	120	0,11	4,00	50	1,67

Таблица 2. Варианты исследованных моделей соединений вида С21

Номер варианта	Высота выпу- клости <i>a</i> , мм	Ширина выпу- клости <i>b</i> , мм	Относи- тельная высота <i>a/b</i>	Относи- тельная ширина <i>b/s</i>	Высота выпу- клости a_1 , мм	Ширина выпук- лости b_1 , мм	Относительная высота a_1/b_1	Относительная ширина b_1 /s	Полное сечение $s+a+a_1$	Коэф- фициент усиления $(s+a+a_1)/s$
11	2,5	23	0,11	0,77	0,83	7,6	0,11	0,25	33	1,11
12	4,5	43	0,10	1,43	1,50	14,3	0,10	0,48	36	1,20
13	7,5	73	0,10	2,43	2,50	24,3	0,10	0,81	40	1,33
14	2,5	25	0,10	0,83	0,83	8,3	0,10	0,28	33	1,11
15	4,5	45	0,10	1,50	1,50	15,0	0,10	0,50	36	1,20
16	7,5	75	0,10	2,50	2,50	25,0	0,10	0,83	40	1,33
17	2,5	29	0,09	0,97	0,83	9,6	0,09	0,32	33	1,11
18	4,5	49	0,09	1,63	1,50	16,3	0,09	0,54	36	1,20
19	7,5	79	0,10	2,63	2,50	26,3	0,10	0,88	40	1,33

клости в зоне шва равномерность распределения нарушается, максимальные напряжения в точке концентрации (перехода от основного к наплавленному металлу) превышают средние от 1,6 до двух и более раз. Вместе с тем большинство элементов конструкций из высокопрочных сталей, например, обшивка корпусов надводных кораблей и подводных лодок, рассчитываются на прочность при статическом осевом нагружении. Как показали экспериментальные исследования, при нагружении статической нагрузкой и достаточной пластичности металла такая концентрация, также, как и остаточные сварочные напряжения, не влияет на прочность сварного соединения в целом. С этой точки зрения использование выпуклости (усиления) для повышения несущей способности стыкового соединения при статическом нагружении вполне возможно.

Известные к настоящему времени работы посвящены определению степени концентрации напряжений в месте перехода от наплавленного к основному металлу [8–10] и влиянию концентрации на прочность сварных соединений [11, 12]. К сожалению, практически отсутствуют данные о напряженном состоянии наплавленного метала (металла шва) в целом и, как следствие, количественные зависимости, позволяющие определить размеры выпуклости, необходимые для компенса-

8/2014

ции снижения характеристик прочности металла шва. Поэтому тема настоящей работы актуальна.

Цель настоящей работы — установление зависимости уровня и характера распределения напряжений от размеров выпуклости, выяснение возможности компенсации пониженной прочности металла шва увеличением размеров выпуклости.

Исследования проводили методом компьютерного моделирования с использованием лицензионного программного комплекса ANSYS (10 версии). Решали плоскодеформированные задачи с использованием конечных элементов (КЭ) PLANE 182. Исследовали стыковые соединения вида C25 (симметричные, с X-образной разделкой кромок) и C21 (несимметричные, с V-образной разделкой кромок) толщиной s=30 мм. Варьировались высота (a) и ширина (b) выпуклости (табл. 1). Форма выпуклости принималась в виде дуги.

Вследствие симметрии соединения С25 относительно горизонтальной x и вертикальной y осей КЭ модель строилась для верхней правой четверти физической модели с соответствующим закреплением узлов на осях x и y (рис. 1). В соединении С21, симметричном относительно только оси y, модель строилась для правой половины с соответствующим закреплением узлов на оси y.

Размер вдоль оси *х* выбирали так, чтобы вблизи торцов распределение напряжений было близ-

29

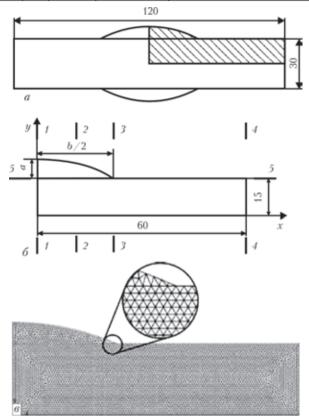


Рис. 1. Общий вид физической (a), расчетной (δ) и конечно-элементной (b) моделей соединения вида C25 (описание l-5 см. в тексте)

ким к равномерному, что исключало влияние этих участков на напряженное состояние в районе шва.

Решали упругую задачу. Физико-механические свойства приняты как для стали: модуль упругости $E=2\cdot 10^5$ МПа, коэффициент Пуассона $\mu=0,3$.

Модели загружали равномерно распределенными по торцам растягивающими усилиями, создающими на них напряжения $\sigma_{\rm r} = 100~{\rm MHz}$ а.

Изучали поля продольных и поперечных, касательных и эквивалентных (по Мизесу) напряжений, а также их эпюры в сечениях по оси шва (I), на расстоянии b/4 или $b_1/2$ от оси y в соединениях C25 и C21 соответственно (2), по кромке выпуклости (3), по торцу узла (4) и вдоль верхней и нижней кромок моделей (5 и (5)0 (рис. (5)1, (6)2, (6)3).

Анализ полей (рис. 3 и 4) показал, что их характер при изменении размеров выпуклостей в целом изменяется мало. Вблизи точек концентрации (переход от наплавленного металла к основному) появляются поперечные и касательные напряжения. Кроме того, небольшие поперечные и касательные напряжения возникают во внутренней части наплавленного металла. Металл в выпуклостях заметно разгружается.

Характер распределения продольных и эквивалентных напряжений отличается мало. На оси шва (сечение *I*) соединения C25 эти напряжения максимальны в средней части, где они несколько превышают средний уровень, и постепенно

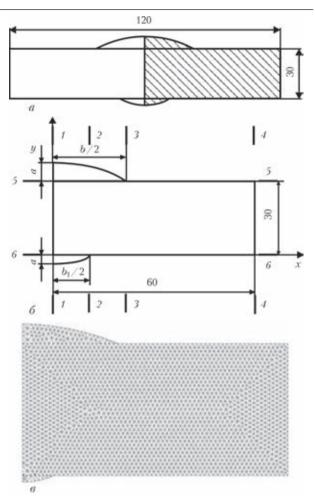


Рис. 2. Общий вид физической (a), расчетной (b) и конечно-элементной (b) моделей соединения C21 (описание 1-b см. в тексте)

уменьшаются по мере приближения к выпуклостям (рис. 5). За счет появления поперечных и касательных напряжений уровень эквивалентных несколько отличается от продольных.

На расстоянии четверти ширины выпуклости (сечение 2) характер распределения и уровень напряжений сохраняется. В точке концентрации напряжений (сечение 3) все напряжения резко возрастают. Размеры выпуклости мало влияют на характер эпюр напряжений, несколько изменяя их уровень (рис. 5).

В соединении C21 характер распределения напряжений в верхней половине соединения в целом сохраняется, но уровень их несколько уменьшается в результате изгиба модели вследствие ее асимметрии относительно продольной оси (рис. 6). В нижней части при этом изгиб уменьшает степень разгрузки в области выпуклости (сечение *I*) и увеличивает степень концентрации в точке перехода от основного к наплавленному металлу (сечение *2*).

Для удобства количественной оценки уровна напряжений в табл. 3 и 4 приведены значения максимальных (σ_{max1} , σ_{max2} , σ_{max3}), минимальных (σ_{min3}) и средних (σ_{cp1} , σ_{cp2} , σ_{cp3}) эквивалентных

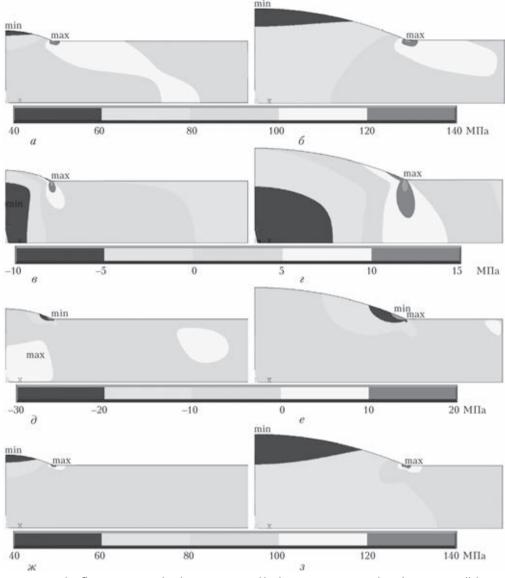


Рис. 3. Поля продольных (a, δ) , поперечных (e, ϵ) , касательных (o, e) и эквивалентных (x, ϵ) напряжений (варианты (a, ϵ) , (x, ϵ)) и (a, ϵ) и (a, ϵ) ((a, ϵ))

напряжений в сечениях I-3. Там же приведены значения коэффициентов перегрузки (степень превышения максимальных напряжений над средними в сечении) в первом и втором сечениях ($\sigma_{\max 1}/\sigma_{\text{ср1}}$ и $\sigma_{\max 2}/\sigma_{\text{ср2}}$) и коэффициенты концентрации напряжений в сечениях 3 ($\sigma_{\max 3}/\sigma_{\text{ср3}}$) и 2 в соединении C21 ($\sigma_{\max 2}/\sigma_{\text{ср2}}$).

Как видно из таблиц, степень перегрузки мало изменяется при изменении размеров выпуклости.

В соединении С25 при изменении коэффициента усиления (увеличения толщины в зоне шва) от 1,17 до 1,5 (табл. 1) коэффициент перегрузки по эквивалентным напряжениям остается на уровне 1,13...1,18 в сечении *I* и 1,07...1,10 в сечении *2*. Как видим, изменение не превышает 3...5 %. Кроме того, сравнение сечений *I* и *2* показывает, что величина и характер распределения напряжений в них отличаются очень мало, при этом коэффициент перегрузки несколько больше в сечении *I*, поэтому в дальнейших расчетах будем рассма-

тривать только сечение I, а коэффициент перегрузки примем равным 1,145 по эквивалентным напряжениям.

В сечении 3 коэффициент концентрации напряжений ($\sigma_{\text{max}3}/\sigma_{\text{ср3}}$) при изменении коэффициента усиления шва $\kappa_{\text{ус}} = ((s+2a)/s)$ от 1,17 до 1,50 увеличивается незначительно и остается на уровне около 2 (1,92...2,18).

В соединении С21 при изменении коэффициента усиления в исследованных вариантах в пределах 1,11...1,33 (табл. 2) коэффициент перегрузки по эквивалентным напряжениям в сечении *I* изменяется пропорционально от 1,14 до 1,34, т. е. остается практически равным коэффициенту усиления.

В сечении 2 коэффициент концентрации с ростом коэффициента усиления увеличивается от 1,43 до 2,39, а в сечении 3 практически не изменяется, оставаясь в пределах 1,59...1,70.

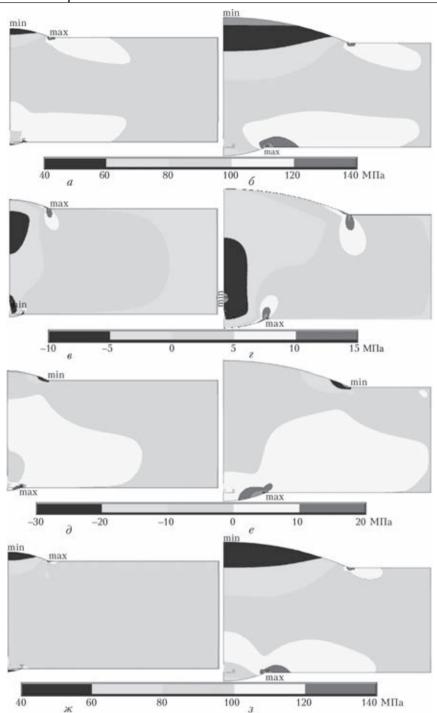


Рис. 4. Поля продольных (a, δ) , поперечных (e, ϵ) , касательных (∂, e) и эквивалентных (\mathcal{H}, β) напряжений (варианты 11 $(a, \epsilon, \delta, \mathcal{H})$ и 13 $(\delta, \epsilon, e, \beta)$)

В соединении С25 величина средних и максимальных эквивалентных напряжений в сечении I с увеличением высоты выпуклости уменьшается (рис. 7, a), что свидетельствует о принципиальной возможности использования выпуклости для компенсации снижения прочности металла шва и повышения прочности такого соединения при статических нагрузках.

В соединении C21 уровень максимальных напряжений в сечении I практически не зависит от высоты выпуклостей, хотя средние напряжения уменьшаются (рис. 7, δ), т. е. в соединении это-

32

го типа увеличение даже статической прочности за счет величины выпуклостей практически невозможно.

Для получения зависимости необходимой высоты выпуклости в соединении C25 от соотношения прочности металла шва и основного металла введем понятие относительная прочность металла шва (степень или коэффициент разупрочнения металла шва, коэффициент снижения прочности металла шва) $\kappa_{\text{мил}} = \frac{\sigma_{\text{мил}}}{\sigma_{\text{ом}}} = \frac{\sigma_{\text{тмил}}}{\sigma_{\text{том}}}$ и воспользуемся условием равновесия узла

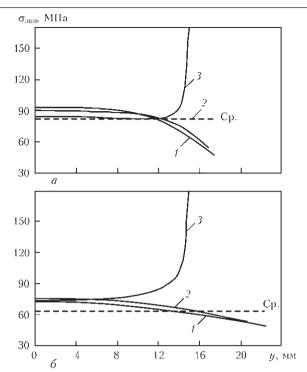


Рис. 5. Эпюры эквивалентных напряжений в сечениях 1-3 (варианты 1 (a) и 3 (δ))

$$\sigma_{\rm cp1}(s+2a) = \sigma_{\rm om4}s \tag{1}$$

и условием прочности для сечения 1

$$\sigma_{\text{max}1} \leq \left[\sigma_{\text{MIII}}\right]_{\text{MJII}} K_{\text{nep}1} \sigma_{\text{cp}1} \leq \left[\sigma_{\text{MIII}}\right], \tag{2}$$

где к $_{\rm nep1} = \sigma_{\rm max1} / \sigma_{\rm cp}$ — коэффициент перегрузки в сечении I; $[\sigma_{\rm min}]$ и $\sigma_{\rm тмin}$ — допускаемые напряжения и предел текучести металла шва соответственно; $[\sigma_{\rm om}]$ и $\sigma_{\rm тom}$ — допускаемые напряжения и предел текучести основного металла соответственно.

Из уравнения равновесия (1)

$$\sigma_{\rm cp1} = \sigma_{\rm om} \frac{s}{s + 2a} \text{ или } \sigma_{\rm cp1} = \sigma_{\rm om} / \kappa_{\rm yc}, \tag{3}$$

где $\kappa_{\rm yc} = \frac{s+2a}{s} \ge 1$ — коэффициент усиления шва. Очевидно, в предельно нагруженном состоянии уравнение (3) запишется в виде $\sigma_{\rm cp1} = \left[\sigma_{\rm om}\right]/\kappa_{\rm yc}$.

Тогда условие прочности в сечении I(2) можно записать в виде

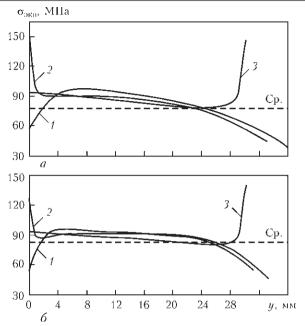


Рис. 6. Эпюры эквивалентных напряжений в сечениях 1-3 (варианты 11 (a) и 13 (δ))

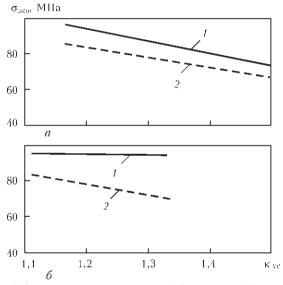


Рис. 7. Зависимость максимальных (1) и средних (2) эквивалентных напряжений в сечении 1 соединений C25 (a) и C21 (б) от коэффициента усиления шва

Таблица 3. Эквивалентные напряжения в сечениях 1-3 в исследованных вариантах соединений вида С25

Номер варианта	σ_{max1}	$\sigma_{\rm cp1}$	σ_{max2}	σ_{cp2}	σ_{min3}	σ_{max3}	σ_{cp3}	$\sigma_{max1}/\sigma_{cp1,}$	$\sigma_{\rm max2}/\sigma_{\rm cp2}$	$\sigma_{max3}/\sigma_{cp3}$
1	93	82	89	83	84	170	85	1,13	1,07	2,00
2	87	74	84	77	77	183	83	1,18	1,09	2,20
3	72	64	75	68	73	188	81	1,13	1,10	2,30
4	92	82	89	83	83	167	85	1,12	1,07	2,00
5	86	74	83	76	77	180	83	1,16	1,09	2,20
6	72	63	75	68	73	186	81	1,14	1,10	2,30
7	91	81	88	82	82	160	85	1,12	1,07	1,90
8	84	73	82	76	77	174	83	1,15	1,08	2,10
9	70	63	74	68	74	182	81	1,11	1,09	2,20
Среднее значение для всех вариантов	-	-	-	-	-	-	-	1,14	1,08	2,13

та от пада 4. Эконовлентные наприжения в сетения 7-3 в песнедованных вариантах соединении вида С21										
Номер варианта	σ_{max1}	$\sigma_{\rm cp1}$	σ_{max2}	σ_{cp2}	σ_{min3}	σ_{max3}	σ_{cp3}	$\sigma_{max1}/\sigma_{cp1,}$	$\sigma_{max2}/\sigma_{cp2}$	$\sigma_{max3}/\sigma_{cp3}$
1	95	83	123	86	80	141	88	1,14	1,43	1,60
2	97	78	150	81	78	146	87	1,24	1,85	1,68
3	95	71	177	74	77	148	87	1,34	2,39	1,70
4	95	83	126	86	80	140	88	1,14	1,47	1,59
5	97	78	150	81	78	146	87	1,24	1,85	1,68
6	94	71	176	74	77	147	87	1,32	2,38	1,69
7	95	83	126	86	81	136	88	1,14	1,47	1,55
8	96	78	150	81	78	143	87	1,23	1,85	1,64
9	94	70	175	73	77	145	87	1,34	2,40	1,67
Среднее значение для	-	-	-	-	-	-	-	-	-	1,64

Таблица 4. Эквивалентные напряжения в сечениях I-3 в исследованных вариантах соединений вида ${\bf C21}$

$$K_{\text{пер }1} \frac{\left[\sigma_{_{\text{OM}}}\right]}{K_{_{\text{yc}}}} \le \left[\sigma_{_{\text{МІІІ}}}\right] \text{ или } K_{_{\text{Пер }1}} \frac{\left[\sigma_{_{\text{OM}}}\right]}{s+2a} \le \left[\sigma_{_{\text{МІІІ}}}\right],$$

откуда после преобразований получим

$$a \ge 0.5s \left(\frac{\kappa_{\text{nep}}}{\kappa_{\text{min}}} - 1\right),$$
 (4)

или при $\kappa_{\text{пер}} = 1{,}145$ $a \ge 0{,}5s \bigg(\frac{1{,}145}{\kappa_{_{\text{МІІІ}}}} - 1\bigg).$ Таким образом, необходимая величина высо-

Таким образом, необходимая величина высоты выпуклости определяется степенью неравномерности распределения напряжений в металле шва ($\kappa_{\text{пер}} \ge 1$) и снижения прочности металла шва по сравнению с основным металлом ($\kappa_{\text{мш}} \le 1$). Так, при $\kappa_{\text{пер}} = 1,145$ и снижении прочности металла шва на 20 %, т. е. $\kappa_{\text{мш}} = 0,8$ для толщины 30 мм, необходимая минимальная высота выпуклости составит 6,5 мм, а при снижении прочности металла шва на 10 % — 4 мм.

Выводы

- 1. При изменении размеров выпуклости в довольно широких пределах коэффициент концентрации эквивалентных напряжений в точках перехода от основного к наплавленному металлу изменяется в пределах 1,9...2,3 в соединении C25, 1,55...1,7 с наружной стороны и 1,45...2,40 с обратной стороны соединения C21.
- 2. Наличие выпуклости в симметричном соединении C25 несколько снижает уровень растягивающих и эквивалентных напряжений внутри металла шва, что дает возможность компенсировать снижение его прочности по сравнению с основным металлом, но это снижение не пропорционально увеличению площади сечения.
- 3. Получено выражение, позволяющее рассчитать необходимую величину выпуклости в соединении C25 при известной степени снижения

прочности наплавленного металла по сравнению с основным.

- 4. Наличие выпуклостей и их размер в несимметричном соединении C21 практически не влияет на уровень максимальных эквивалентных напряжений в сечении по оси шва, поэтому компенсировать пониженную прочность металла шва увеличением выпуклостей невозможно.
 - 1. ГОСТ 5264–80. Ручная дуговая сварка. Соединения сварные. Основные типы, конструктивные элементы и размеры. М.: ИПК Изд-во стандартов, 1993. 65 с.
- 2. ГОСТ 8713–79. Сварка под флюсом. Соединения сварные. Основные типы, конструктивные элементы и размеры. М.: ИПК Изд-во стандартов, 2005. 39 с.
- 3. ГОСТ14771–76. Дуговая сварка в защитном газе. Соединения сварные. Основные типы, конструктивные элементы и размеры. М.: ИПК Изд-во стандартов, 2000. 39 с.
- 4. ГОСТ 2601–84. Сварка металлов. Термины и определения основных понятий. М.: ИПК Изд-во стандартов, 1995. 57 с.
- ДСТУ 3761.3–98. Зварювання та споріднені процеси. Частина 3. Зварювання металів: з'єднання та шви, технологія, матеріали та устаткування. Терміни та визначення.

 Київ: Державний комітет стандартизації метрології та сертифікації України, 1999. 54 с.
- 6. Николаев Г. А., Куркин С. А., Винокуров В. А. Сварные конструкции. Прочность сварных соединений и деформации конструкций М.: Высш. шк., 1982. 272 с.
- 7. Николаев Г.А., Куркин С.А., Винокуров В.А. Расчет, проектирование и изготовление сварных конструкций. М.: Высш. шк., 1971. 760 с.
- Кархин В. А. Влияние формы сварного шва на распределение напряжений при растяжении стыковых соединений большой толщины // Автомат. сварка. – 1985. – №9(390). – С. 25–28.
- 9. Стаканов В. И., Костылев В. И., Рыбин Ю. И. О расчете коэффициента концентрации напряжений в стыковых сварных соединениях // Там же. −1987. №11(416). С. 19–23.
- 10. *Кархин В. А., Костылев В. И., Стаканов В. И.* Влияние геометрических параметров стыковых, тавровых и крестовых соединений на коэффициент концентрации напряжений // Там же. 1988. №3(420). С. 6–11.
- Пустовит А. И., Воронин С. А., Ющенко К. А. Влияние концентрации напряжений на прочность сварных соединений мартенситной стали // Там же. – 1987. – №9(414). – С. 1–3.
- Махненко В. И. Ресурс безопасной эксплуатации сварных соединений и узлов современных конструкций. – Киев: Наук. думка, 2006. – 620 с.

Поступила в редакцию 30.05.2014

