## ОЦЕНКА СКЛОННОСТИ К ОТПУСКНОЙ ХРУПКОСТИ ТЕПЛОУСТОЙЧИВЫХ СТАЛЕЙ С ПОМОЩЬЮ ВЫСОКОТЕМПЕРАТУРНЫХ ИСПЫТАНИЙ

## В.Ю. СКУЛЬСКИЙ<sup>1</sup>, В.В. ЖУКОВ<sup>1</sup>, М.А. НИМКО<sup>1</sup>, С.И. МОРАВЕЦКИЙ<sup>1</sup>, Л.Д. МИЩЕНКО<sup>2</sup>

<sup>1</sup>ИЭС им. Е.О. Патона НАНУ. 03680, г. Киев-150, ул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua <sup>2</sup>ПАО «Турбоатом», 61037, г. Харьков, пр-т Московский, 199. E-mail: office@turboatom.com.ua

Охарактеризована сущность проблемы образования трещин при отпуске. Показано, что условием зарождения таких трещин является низкая пластичность металла в период развития пластической деформации, вызванной релаксацией напряжений. В этих условиях важным охрупчивающим фактором является временно развивающееся вторичное твердение, связанное с процессом зарождения и выделения в матрице вторичных фаз. Поскольку различные по легированию стали в процессе отпуска ведут себя по-разному, в каждом конкретном случае представляет интерес оценка их возможной склонности к отпускной хрупкости. Описана методика высокотемпературных испытаний на растяжение, позволяющая оценивать пластические свойства металла в различных условиях отпуска. Склонность к отпускной хрупкости оценивали с использованием критерия величины относительного сужения  $\psi \leq 25$ %. Исследован характер изменения пластичности сложнолегированных теплоустойчивых сталей при различных режимах отпуска, приводящих к состоянию вторичного твердения и после стадии твердения. Показано, что в период развития твердения стали имели низкую пластичность с характерным для такого состояния межзеренным разрушением. Определены критические режимы отпуска, при которых достигается состояние высокой пластичности, на основании чего можно судить об отсутствии склонности к отпускным трещинам. Библиогр. 9, табл. 1, рис. 8.

Ключевые слова: стали закаливающиеся, отпуск, трещины, вторичное твердение, пластичность при отпуске, условие высокой пластичности

Образование трещин в процессе отпуска или при повторном нагреве в термически упрочняемых сталях и их сварных соединениях является следствием сочетания трех факторов — структурного (обусловленного вторичным твердением), охрупчивающего (связанного с выделением на границах зерен вторичных фаз и сегрегаций примесей) и силового (в виде напряжений, вызванных образованием закалочных структур, усадкой металла либо приложенной внешней нагрузкой).

Силовой фактор, в основе которого лежит энергия упругих искажений, накопленных в кристаллической системе, при нагреве вызывает развитие релаксационной пластической деформации. В условиях пониженной пластичности, обусловленной вторичным твердением, деформация приобретает локальный характер — концентрируется на границах зерен или в области более податливых (мягких) структурных составляющих. Малый ресурс пластичности таких участков и дополнительная сегрегация примесей повышают вероятность зарождения микродефектов и образования трещин.

Трещины имеют малые размеры и, располагаясь Цель настояш внутри металла, могут остаться невыявленными, если неразрушающий контроль был выполнен до проведения завершающей термической обработки. Поэтому представляется важным заранее – до изго-© В.Ю. Скульский, В.В. Жуков, М.А. Нимко, С.И. Моравецкий, Л.Д. Мищенко, 2016

товления промышленных изделий — устанавливать возможность и условия образования таких трещин для принятия профилактических мер.

В исследовательской практике применяют различные методы проверки склонности сталей и их сварных соединений к охрупчиванию и образованию трещин при отпуске. Могут быть использованы как маломерные образцы из однородного металла, так и образцы, вырезанные из сварных соединений. В ряде случаев для испытаний требуется специальная оснастка или оборудование. Более удобными и менее затратными по времени являются экспериментальные методы, позволяющие исключить из цикла подготовки операции, связанные со сваркой, и использовать простые в изготовлении образцы малых размеров. Таким методом может быть высокотемпературное испытание на растяжение [1–3]. При этом критерием охрупчивания может служить величина относительного сужения  $\psi = 25 \% [3]$ : при меньших значениях металл склонен к отпускным трещинам. В более ранней работе А.Г. Винкер и А.В. Пенс [4] определили в качестве порогового значения  $\psi = 20$  %.

Цель настоящей работы заключалась в изучении влияния режимов отпуска предварительно закаленных энергомашиностроительных сталей на отпускную хрупкость с применением метода высокотемпературных испытаний на растяжение.

Испытания проводили на установке Gleeble 380. Использовали цилиндрические образцы диаметром 10 мм с резьбовыми частями на концах для их закрепления в нагружающих захватах. Нагрев по заданному режиму осуществляли с помощью тока, пропускаемого через образец от подсоединяемых к нему медных прижимов. Для гарантированного разрушения в рабочей части (между прижимами) образцы в центре имели проточку меньшего диаметра (6 мм). В качестве опытных материалов использовали литую, кованую и горячедеформированную теплоустойчивые стали П3 (15X2М2ФБС), ЭИ415 (20X3BM-ФА) и Р91 (X10CrMoVNb91 (типа 10Х9МФБ)). Термовременные диаграммы, ограничивающие области вторичного твердения, строили по результатам измерения твердости после различных режимов отпуска (различной выдержки при различных температурах) предварительно закаленных образцов. В данных опытах для стали Р91 использовали образцы металла швов с аналогичной системой легирования; полученные экспериментальные диаграммы твердения служили ориентиром для выбора условий последующих испытаний на растяжение с использованием образцов из горячедеформированной трубной стали. Применительно к испытаниям на растяжение при выбранных температурах применен следующий подход. Известно, что трещины отпуска образуются в результате медленно развивающейся пластической деформации — релаксационной ползучести (по данным работы [2] скорость деформации (относительного удлинения, %) составляет 10<sup>-4</sup>...10<sup>-5</sup> %/ч). В таких условиях деформация инициирует выделение карбидных фаз, вызывающих охрупчивание границ зерен [5], и, предположительно, становится возможным перемещение примесных атомов вместе с движущимися дислокациями к границам. В обычных испытаниях на статическое растяжение скорости деформации выше и охрупчивание может не наблюдаться.

Как показали А.В. Дикс и В.Ф. Севедж [6] на примере никелевого сплава, высокотемпературное охрупчивание проявлялось при малых скоростях деформации; при растяжении со скоростью выше 25 мм/мин охрупчивающий эффект ослабевал и металл имел повышенную пластичность. В проводимых в настоящей работе испытаниях также создавали достаточно низкую скорость деформации образцов — скорость перемещения захватов составляла 0,04 мм/мин. Эксперимент включал два цикла нагрева (рис. 1). Первый цикл предусматривал нагрев образца до  $t_{max} = 1250$  °C за 5 с, выдержку в течение 15 с и последующее ускоренное охлаждение до комнатной температуры со скоростью в интервале 600...500 °C  $w_{6/5} = 40$  °C/с. На этом этапе воссоздавали условие сварочно-



Рис. 1. Температурные циклы при выполнении экспериментов

го нагрева и закалки металла зоны термического влияния. Во время второго цикла выполняли медленный нагрев до требуемой температуры термической обработки (со скоростью 2 °С/с), выдержку при установленной температуре в течение также предварительно выбираемого времени и затем производили деформацию образца (при этой же температуре). Температуру и выдержку устанавливали исходя из термовременных границ областей вторичного твердения. В одних случаях испытывали образцы после термической обработки, соответствующей достижению состояния твердения и, следовательно, низкой пластичности. В других — после режима обработки, обеспечивающего выход из области твердения, когда металл должен становиться более пластичным. За критерий выбран более «жесткий», по сравнению с критерием А.Г. Винкера и А.В. Пенса, показатель  $\psi = 25$  %. В экспериментах тепловой режим обработки оценивали с помощью параметра Ларсона-Миллера Р<sub>І.М</sub>, который одновременно учитывает как абсолютную температуру Т (в градусах Кельвина), так и время теплового воздействия на металл  $\tau$ , ч:  $P_{LM} = T(20 + \lg(\tau))$ .

Предварительно проведенные исследования склонности ко вторичному твердению представлены на рис. 2. Зафиксированные области твердения имеют различные термовременные пределы. Общим является их сужение и смещение к малым длительностям выдержки с повышением температуры, что обусловлено усилением термической активации диффузии атомов в кристаллической системе, быстрым зарождением, выделением и укрупнением карбидных и карбонитридных фаз (в зависимости от систем легирования сталей) и, как следствие, быстрым переходом к стадии разупрочнения твердого раствора.

Режимы термической обработки образцов приведены в таблице. Позиции I и II соответствуют испытаниям в состоянии твердения и вне областей твердения.

Результаты показали, что в состоянии вторичного твердения металл склонен к хрупкому разрушению. Полученные в этих условиях значения у находились



на весьма низком уровне — в пределах 1,7...6 %. Образцы разрушались практически без утонения с характерным для такого состояния преимущественно межзеренным изломом\* (рис. 3).

Как показано на рис. 4, низкая пластичность сохраняется в определенных интервалах термовременных параметров  $P_{\rm LM}$  как в пределах областей вторичного твердения, так и за их границами. Граничные значения  $P_{\rm LM}^{\Gamma}$  (наклонные штриховые линии),рассчитанные по диаграммам твердения, составляют: у сталей ПЗ и ЭИ415 в интервале 700...600 °С — (17,5...18,9)·10<sup>3</sup> и (17,7...18,7)·10<sup>3</sup> соответственно, у стали Р91 в интервале 550...500 °С – 15,8...16,2·10<sup>3</sup>.

В отличие от сталей ЭИ415 и P91, у которых значения  $\psi$  за пределами области твердения начинают возрастать, у стали ПЗ пластичность в некотором интервале режимов запредельного отпуска остается весьма низкой. Так, во время испытания при 700 °С после выдержки до 40 мин, что явно превышает оцененное экспериментально время завершения стадии твердения (около 15 мин), относительное сужение образцов из стали ПЗ оставалось на начальном низком уровне. Вероятно, в данном случае мог проявиться дополнительный вклад процесса активирования выделения карбидных фаз пластической деформацией в развитие твердения [5]. Это могло привести к смещению границ обла-

Режимы термической обработки образцов

| Сталь                 | Группа<br>испы-<br>таний | № об-<br>разца | Отпуск<br>t, °C/т, мин | $P_{\rm LM} \cdot 10^{-3}$ |
|-----------------------|--------------------------|----------------|------------------------|----------------------------|
| 15Х2М2ФБС<br>(П3)     | Ι                        | 1              | 600/20                 | 17,04                      |
|                       |                          | 2              | 700/15                 | 18,87                      |
|                       |                          | 3              | 700/15                 | 18,87                      |
|                       | II                       | 4              | 700/40                 | 19,29                      |
|                       |                          | 5              | 740/20                 | 19,78                      |
|                       |                          | 6              | 760/60                 | 20,66                      |
|                       |                          | 7              | 750/100                | 20,69                      |
|                       |                          | 8              | 750/180                | 20,95                      |
|                       |                          | 9              | 780/60                 | 21,06                      |
| 20ХЗМВФ<br>(ЭИ415)    | Ι                        | 1              | 600/20                 | 17,04                      |
|                       |                          | 2              | 700/15                 | 18,87                      |
|                       | Π                        | 3              | 700/40                 | 19,29                      |
|                       |                          | 4              | 700/60                 | 19,46                      |
|                       |                          | 5              | 740/100                | 20,48                      |
|                       |                          | 6              | 740/180                | 20,74                      |
| X10CrMoVNb91<br>(P91) | Ι                        | 1              | 520/20                 | 15,48                      |
|                       | II                       | 2              | 600/20                 | 17,04                      |
|                       |                          | 3              | 600/20                 | 17,04                      |
|                       |                          | 4              | 700/15                 | 18,87                      |
|                       |                          | 5              | 760/10                 | 19,86                      |

сти твердения в сторону больших выдержек относительно их положения, установленного на основании измерений твердости. Также не исключается возможность вклада в дополнительное твердение и сдерживание улучшения пластичности процесса выделения при повышенной температуре (и деформации) карбидов иного типа [5, 7–9].

В целом же у исследованных сталей после завершения стадии твердения происходит возрастание высокотемпературной пластичности (рис. 4). Причем у стали Р91\*\* этот переход происходит



Рис. 3. Характер разрушения образца в условиях развития в металле вторичного твердения: *а* — образец после испытания; *б* — поверхность разрушения (×600)

<sup>\*</sup> В металлографических исследованиях принимала участие Т.А. Алексеенко.



Рис. 4. Изменение относительного сужения  $\psi$  в зависимости от  $P_{\rm LM}$  и связь термовременной границы областей твердения  $P_{\rm LM}^{\Gamma}$  с температурой отпуска t

более резко — при меньших значениях и в более узком диапазоне параметра  $P_{\rm LM}$ . В этих условиях относительное сужение возросло до более высокого уровня (не ниже 40 % при  $P_{\rm LM} \approx (18,9...19,9)\cdot 10^3$ ), чем у сталей ПЗ и ЭИ415. Последние были более «инертными» в процессе перехода от пониженной к высокой пластичности. Максимальные значения  $\psi$  достигли меньшего



Рис. 5. Схема диаграммы растяжения и рассчитываемая площадь, соответствующая работе распространения разрушения  $A_{\rm p}$ 



Рис. 6. Расчетные значения работы разрушения А<sub>р</sub>

уровня и при больших значениях параметра  $P_{\rm LM}$ : 32...33 % при  $P_{\rm LM} \approx 30\cdot10^3$  у стали ПЗ и 33...34 % при  $P_{\rm LM} = (25...27)\cdot10^3$  у стали ЭИ415. По полученным экспериментальным кривым определены следующие критические значения параметра отпуска  $P_{\rm LM}$ , при которых достигается критериальное относительное сужение 25 %: 20,7·10<sup>3</sup> для литой стали ПЗ, 20·10<sup>3</sup> для кованой стали ЭИ415 и 17,6·10<sup>3</sup> для горячекатаной трубной стали Р91.

Энергетической характеристикой сопротивления разрушению может служить работа распространения трещины, которая зарождается в образце после достижения определенной нагрузки (напряжения). Мерой работы распространения трещины  $A_p$  является площадь под частью диаграммы разрушения после момента появления трещины. Однако определение такой характеристики по диаграмме растяжения является неточным, поскольку трудно определить напряжение, при котором зарождается трещина.По этой причине проведенную в работе оценку сопротивления металла распространению трещины следует считать приближенной, хотя она и иллюстрирует

<sup>\*\*</sup> Испытания при 600 °C/20 мин показали большой разброс значений ψ. В проводимом анализе свойств учитывали более низкое значение, как возможный худший вариант пластичности.

## НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ



Рис. 7. Диаграммы растяжения образцов из стали Р91 для условий:  $a - P_{\rm LM} = 15,48\cdot10^3$ ;  $b - 17,04\cdot10^3$ ;  $e - 18,87\cdot10^3$ ;  $e - 19,86\cdot10^3$ 

связь с определенными выше показателями пластичности. В данном случае работу распространения трещины оценивали по площади под нисходящей ветвью диаграммы после достижения максимальной нагрузки P — на участках, соответствующих перемещению *а* захватов машины (см. схему на рис. 5). При этом полагали, что на этой стадии в образцах уже имеются очаги разрушения. Соответствующие расчеты площадей (рис. 6) по полученным при испытаниях диаграммам растяжения выполнены методом интегрирования с применением программы Origin 7.5 (Origin Lab Corporation, США).

Сопоставляя указанные результаты и данные на рис. 4 можно отметить, что у сталей ПЗ и ЭИ415 существует некоторая согласованность в изменении работы разрушения и относительного сужения с ростом параметра отпуска  $P_{\rm LM}$ . В случае же стали Р91 характер изменения этих характеристик отличается. Причина наблюдаемых различий заключается в соотношениях величин максимальной (разрушающей) силы P и фиксируемого перемещения a на стадии разрушения (рис. 7). Так, в случае начального испытания с параметром  $P_{\rm LM} = 15,48 \cdot 10^3$  металл имел высокую прочность и весьма малое перемещение a, соответствующее склонности к хрупкому разрушению. Расчетная работа разрушения  $A_{\rm p}$  составляла 7,5 Н·м. При испытании по режиму с параметром  $P_{\rm LM} = 17,04\cdot10^3$  получена максимальная величина  $A_{\rm p}$ . В этом состоянии возросло перемещение при разрушении, а сила P сохранилась на высоком уровне. В последних двух испытаниях, невзирая на увеличение значений перемещения, имело место снижение разрушающей силы, что привело к снижению результирующих значений  $A_{\rm p}$ . Можно предположить, что такое поведение стали определяется особенностями структурных изменений, развивающихся при отпуске и высокотемпературной деформации.

Большая степень согласованности с характером изменения  $\psi$  имеет место при использовании в качестве характеристики сопротивления хрупкому разрушению не работы разрушения, а составляющей этой расчетной величины — перемещения захватов машины *а* на стадии разрушения (рис. 8). Из последних зависимостей следует, что высокое сопротивление исследованных сталей образованию трещин повторного нагрева достигается при таком их состоянии, при котором перемещение *а* при испытании на растяжение в процессе отпуска превышает 1,2...1,5 мм (1,5, 1,2 и 1,5 мм для сталей ПЗ, ЭИ-415 и Р91 соответственно, определено для условий, указанных стрелками критическим значениям параметра  $P_{\rm IM}$ ).



Рис. 8. Влияние режимов отпуска на величину перемещений *а* на стадии разрушения

В заключение заметим, что вторичное твердение может периодически проявляться в различные периоды отпуска. В приведенных исследованиях склонности к твердению после первой (рассмотренной выше) стадии фиксировались волнистые изменения твердости (увеличение и уменьшение) при более длительных выдержках. Однако такие временные повышения значений твердости были незначительными на фоне уже достигнутого общего разупрочнения твердого раствора. В данной работе уделено внимание первой стадии твердения, выявляемой в процессе относительно коротких выдержек (до ~3 ч). Интерес к этому периоду обусловлен тем, что именно в начале отпуска развивается релаксация напряжений, что в условиях деградации пластичности вследствие твердения ведет к повышению вероятности образования микродефектов.

## Выводы

1. Определены термовременные области развития вторичного твердения в условиях высокого отпуска сталей 15Х2М2ФБС, 20Х3ВМФА и Х10СгМоVNb91, предварительно закаленных при имитационном термическом цикле сварки. Внешние границы областей твердения соответствуют следующим значениям параметра Ларсона–Миллера  $P_{\rm LM}$ : (17,5...18,9)·10<sup>3</sup> и (17,7...18,7)·10<sup>3</sup>для сталей ПЗ и ЭИ415 в интервале 700...600 °С, (15,8...16,2)·10<sup>3</sup> для стали Р91 в интервале 550...500 °С.

С помощью представленного в работе метода высокотемпературных испытаний на растяжение проиллюстрирован характер изменения пластичности в зависимости от режимов отпуска и состояния исследованных сталей. Показано, что в условиях вторичного твердения стали обладают низкой пластичностью и склонны к хрупкому межзеренному разрушению.

2. Используя в качестве критерия склонности к высокотемпературной хрупкости величину относительного сужения  $\psi \le 25$  %, установлены режимы отпуска, при которых достигается высокая пластичность и исключается вероятность образования трещин повторного нагрева: для стали  $\Pi 3 - P_{\rm LM} \ge 20,7\cdot10^3$ , для стали  $\Im 415 - P_{\rm LM} \ge 20\cdot10^3$  для стали  $P_{\rm LM} \ge 17,6\cdot10^3$ .

- Prager M., Sines G. Embrittlement of precipitation hardenable nickel-base alloy by oxigen // Transactions of ASME. - 1971. - 93, № 2. - P. 112–119.
- Земзин В.Н., Шрон Р.З. Термическая обработка и свойства сварных соединений. – Л.: Машиностроение, 1978. – 367 с.
- Титова Т.И., Шульган Н.А., Боровской А.С. Современные требования, предъявляемые к сварочным материалам для сварки нефтехимических сосудов давления, изготавливаемых из стали типа 2,25Cr–1Mo–0,25V // Сб. тр. науч.-техн. конф. «Сварочные материалы-2012». – С.-Петербург: Из-во политех. у-та, 2012.– С. 192–201.
- Vinkier A.G., Pense A.W. A review of underclad cracking in pressure-vessel components // WRC Bulletin. –1974. – № 197, August. – 35 p.
- The mechanism of stress-relief cracking in a ferritic Alloy Steel / J.G. Nawrocki, J.N. DuPont, C. V. Robin at al. // Welding J. – 2003. – 82, № 2. – P. 25–35.
- Dix A.W., Savage W.F. Factors Influencing Strain-Age Cracking in Inconel X-750 // Welding J. – 1971. – 50, № 6. – P. 247–252.
- Природа тепловой хрупкости сталей оборудования АЭС и методы ее снижения / М.И. Оленин, В.И. Горынин, Б.Т. Тимофеев и др. // Вопросы материаловедения. – 2014. – № 3. – С. 167–173.
- Lundin C.D., Khan K.K. Fundamental studies of metallurgical causes and mitigation of reheat cracking in 11/4Cr–1/2Mo and 21/4Cr–1Mo steels // WRC Bulletin. – 1996. – № 409, February. – 117 p.
- Ланская К.А. Высокохромистые жаропрочные стали. М.: Металлургия, 1976. – 216 с.

Поступила в редакцию 05.11.2015