УДК 621.791.753.5.048

АНАЛИЗ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ ШЛАКОВОЙ КОРКИ В ПРОИЗВОДСТВЕ АГЛОМЕРИРОВАННЫХ ФЛЮСОВ

И.А. ГОНЧАРОВ 1 , Л.И. ФАЙНБЕРГ 1 , А.А. РЫБАКОВ 1 , А.В. НЕТЯГА 2

¹ИЭС им. Е.О. Патона НАН Украины. 03680, г. Киев-150, ул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua ²НТУУ «Киевский политехнический институт». 03056, г. Киев, просп. Победы, 37

Использование отходов плавленых и агломерированных флюсов является актуальной задачей. Но применительно к агломерированным флюсам отсутствуют литературные данные об эффективном использовании шлаковой корки. В данной работе проведен анализ возможности использования шлаковой корки агломерированных флюсов для изготовления флюсов, обеспечивающих качественное формирование и высокие механические свойства металла шва при скоростной многодуговой сварке хладостойких низколегированных сталей. Проведено сравнительное исследование сварочно-технологических свойств оригинального флюса ОК 10.74 и опытных флюсов на основе дробленой шлаковой корки при одно- и четырехдуговой сварке. Методом спектрального анализа изучен химический состав металла сварных швов. Методом оптической металлографии исследованы распределение в них неметаллических включений и особенности микроструктуры. Ударную вязкость металла швов определяли методом испытаний на ударный изгиб. Установлено, что флюс, изготовленный по методу агломерирования с добавкой в состав шихты 5 мас. % марганца металлического, по всем исследованным показателям близок к оригинальному флюсу ОК 10.74, а по уровню ударной вязкости отвечает требованиям к сварным соединениям хладостойких газопроводных труб из сталей категории прочности до X80 включительно. Полученные результаты представляют интерес для потребителей флюса с точки зрения повышения эффективности его использования при многодуговой сварке труб большого диаметра. Библиогр. 10, табл. 4, рис. 3.

Ключевые слова: сварка под флюсом, агломерирование, регенерирование, неметаллические включения, микроструктура, ударная вязкость металла шва

При сварке под флюсом образуются отходы, включающие нерасплавленную часть флюса и шлаковую корку (ШК), которая характеризуется пониженным содержанием водорода, растворенного в форме ОН-[1], серы и фосфора. Эти отходы, относящиеся к III классу опасности, должны храниться в закрытой таре. Объемы ШК на ряде предприятий, например, трубных заводах, исчисляются тысячами тонн, поэтому работы по их утилизации весьма актуальны. Вопрос использования отходов плавленых флюсов (нерасплавленной части флюса и ШК) стоит перед исследователями уже достаточно давно [2]. Известна технология регенерации нерасплавленной части флюса [3], которая на передовых трубных станах реализуется непосредственно в процессе сварки. ШК используют при выплавке флюсов [4], либо путем ее добавления в измельченном виде к исходному флюсу. Исследования показали, что в процессе сварки не происходит существенных изменений в строении и составе шлака, исключающих возможность его применения непосредственно в виде флюса [5]. Поэтому ее использование в качестве компонента шихты для выплавки флюса нерационально в случаях, когда нет необходимости получать флюсы с насыпной массой < 1,1 кг/дм³, используемые обычно при многодуговой сварке с повышенной скоростью. Предложена технология изготовления

регенерированных сварочных флюсов, заключающаяся в дроблении ШК с последующей магнитной сепарацией и рассевом на фракции [6]. Такие флюсы обеспечивают повышенную стойкость сварных швов к порообразованию [7].

Все описанные выше исследования касались сварочных плавленых флюсов. Для агломерированных флюсов с учетом их высокой стоимости предъявляются повышенные требования в части прочности гранул с целью повышения доли повторно использованных после сепарации отходов нерасплавленного при сварке флюса.

Работ, посвященных применению ШК агломерированных флюсов, в литературе немного. В работе [8] установлено, что агломерированный флюс, изготовленный из ШК, снижает легирование шва и, соответственно, прочностные свойства, в то время как его ударная вязкость зависит от конкретных условий. Поэтому его применение требует проведения контроля за качеством сварных соединений, технологией изготовления регенерированного флюса [9].

Наши исследования [10] показали возможность использования ШК, образующейся при многодуговой сварке под смесью алюминатно-основного агломерированного флюса ОР-132 и плавленого марганцево-силикатного флюса АН-60, взятых в соотношении 1:4, при изготовлении регенерированно-

© И.А. Гончаров, Л.И. Файнберг, А.А. Рыбаков, А.В. Нетяга, 2016

nonbodannem ebapo inon npobonom mapan eb-oot 1111/1/3													
Флюс	Количество дуг	Номер шва	С	Si	Mn	Ni	Mo	Al	Nb	V	Ti	S	P
ОК 10.74	1	401	0,084	0,50	1,71	0,25	0,28	0,028	н/д	0,060	0,010	н/д	н/д
ОК 10.74	4	386	0,085	0,43	1,64	0,20	0,20	0,025	0,021	0,059	0,012	0,009	0,019
A	1	400	0,090	0,34	1,57	0,20	0,23	0,026	н/д	0,064	0,006	н/д	н/д
В	4	405	0,088	0,30	1,68	0,19	0,22	0,024	0,024	0,059	0,007	н/д	н/д
ОМ: 10Г2ФБ			0,103	0,25	1,57	0,20	<0,01	0,030	0,030	0,081	0,013	0,005	0,013

Таблица 1. Химический состав металла швов при сварке стали 10Г2ФБ под различными флюсами (мас. %) с использованием сварочной проволоки марки Св. 08Г1НМА

го флюса. Такой флюс имел хорошие формирующие свойства при однодуговой сварке низкоуглеродистых и низколегированных сталей со скоростью до 40 м/ч. Механические свойства наплавленного металла при сварке проволокой Св-08Г1НМА диаметром 4 мм, следующие: $\sigma_{\rm T} = 530,7$ МПа; $\sigma_{\rm p} = 649.4 \text{ M}\Pi \text{a}; \ \delta = 25.3 \text{ %}; \ \psi = 63.7 \text{ %}; \ \textit{KCV}$ при -20 °C — (35,3...40,3)/37,7; при 0 °C — (41,2...47,1)/44,9; при 20 °С — (54,9...82,4)/71,8.

Однако этот флюс был непригоден для скоростной многодуговой сварки из-за высокого насыпного веса, являющегося причиной образования дефектов формирования швов. Кроме того, уровень ударной вязкости металла шва не удовлетворял требованиям к сварным соединениям хладостойких сталей.

Целью данной работы является анализ возможности использования ШК агломерированных флюсов для изготовления флюсов, обеспечивающих качественное формирование и высокие механические свойства металла шва при скоростной многодуговой сварке хладостойких низколегированных сталей.

В настоящее время трубные заводы используют агломерированные импортные флюсы преимущественно алюминатно-основного типа согласно классификации EN 760 марок OP 132 («Oerlikon»), OK 10.74 («ESAB»), 995N, 998 («Lincoln») и др. Учитывая высокую стоимость указанных флюсов, представляло практический интерес оценить возможность изготовления флюсов из образующейся при сварке ШК. В качестве объекта для исследований была взята ШК флюса ОК 10.74, образующаяся при многодуговой сварке трубных сталей проволокой Св-08Г1НМА.

Ниже описана методика работы по изготовлению регенерированного флюса. Из размолотой ШК флюса ОК 10.74 были отобраны две фракции: $0.315...4.0 \text{ MM } \text{u} \le 0.315 \text{ MM}.$

Затем была выполнена тщательная магнитная сепарация, в результате которой из фракции 0,315...4,0 мм ШК были удалены капли электродного металла и окалина. В результате был получен продукт, отвечающий по гранулометрическому составу плавленому флюсу марки АН-60. Аналогичная технология применялась в работах [6, 7] при изготовлении регенерированного флюса. Поэтому указанный выше материал мы условно обозначили как регенерированный флюс по варианту «А». Его насыпная масса составила 1,72 кг/дм³, что значительно превышает рекомендуемые для многодуговой сварки значения 0.9...1.2 кг/дм³. Зерно флюса имело размер 0,315...4,0 мм с преобладанием фракции размером 0,315...1,6 мм. Следует отметить, что эта фракция является типичной для большинства агломерированных и целого ряда плавленых флюсов. Перед сваркой флюсы прокаливали при 400 °С в течение 2 ч.

Из данных о химическом составе металла швов, сваренных под флюсом ОК10.74 (швы №№ 386, 401), и под регенерированным флюсом по варианту «А» (шов № 400) видно, что при использовании регенерированного флюса заметно снижается легирование металла шва по ряду элементов (табл. 1), причем наиболее существенным представляется уменьшение в нем содержания марганца.

С учетом полученных данных, в размолотую ШК фракции ≤ 0,315 мм после магнитной сепарации и прокалки добавляли 5 % марганца металлического марки Мн-98 (фракция 0,2...0,4 мм), получая в интенсивном смесителе однородную сухую смесь. Затем на основе Na-K жидкостекольного связующего по известной технологии была изго-

Таблица 2. Физические свойства флюсов

Обозначение флюса	Размер гранул флюса, мм	Насыпная масса, кг/дм ³	Примечание
A	0,3154,0	1,72	Преобладание фракции 0,3151,6 мм
В	0,24,0	1,26	Преобладание фракции 0,21,6 мм
OK10.74	0,21,6	1,02	_

Таблица 3. Режимы сварки с использованием проволоки Св-08Г1НМА диаметром 4 мм

Флюс	Количе- ство дуг	Номер шва	I/U, A/B	v _{св} , м/ч	$q/v_{_{\mathrm{CB}}}$, кДж/мм	B, mm	
А (однодуговая сварка)	1	400	720750/3940	23,5	4,4	21	
В	1	403	850880/3637	24.0	4,7	25	
(однодуговая сварка)	1	402	820850/3839	24,0	4,8	2728	
	1	405	1150/3536	99,2	4,5	25	
B	2		800850/35				
(четырехдуговая сварка)	3		650700/38				
	4		700/3840				
ОК10.74 (однодуговая сварка)	1	401	820830/37	23,5	4,7	30	
	1	386	1150/33		4,5	25	
OK10.74	2		900/35	98,0			
(четырехдуговая сварка)	3		700/40				
	4		600/43	1			

Примечание. Межэлектродные расстояния при четырехдуговой сварке составляли 15...21 мм (q/v_{cs} – погонная энергия процесса сварки; В – ширина шва.

товлена партия агломерированного флюса. Насыпная масса полученного флюса, обозначаемого далее как «В», составила 1,26 кг/дм³ (табл. 2).

Флюсы оценивали по формированию наплавок, а также по химическому составу и ударной вязкости контрольных швов, выполняемых на односторонних стыковых соединениях из стали 10Г2ФБЮ толщиной 19 мм с V-образной разделкой 5 мм×90°. Режимы одно- и двухдуговой сварки с использованием проволоки Св-08Г1НМА диаметром 4 мм приведены в табл. 3.

Процесс сварки под флюсом «А» был нестабильным с выплесками и формированием высокого узкого гребня ШК. Полученный шов (№ 400) имел высокое усиление с неплавным переходом к основному металлу и небольшими подрезами. Такое формирование шва связано, по-видимому, с повышенной насыпной массой флюса $(1,72 \text{ кг/дм}^3)$.

При сварке под флюсом «В» стабильность процесса и качество формирования швов, выполненных одно- и четырехдуговой сваркой, были удовлетворительными. Фотографии швов приведены на рис. 1.

Шов № 400, выполненный однодуговым процессом сварки, сваренный под регенерированным флюсом «А», показал достаточно высокую ударную вязкость ($KCV_{-40} = 62,6 \text{ Дж/см}^2$), однако, как указывалось, по внешнему виду сварной шов имел недостатки.

Шов № 405, выполненный четырехдуговой сваркой под агломерированным флюсом «В», имел удовлетворительные свойства. По химическому составу, за исключением кремния, он близок к шву № 386, выполненному четырехдуговым процессом сварки, под оригинальным флюсом ОК10.74 (табл. 1), а по ударной вязкости (табл. 4) лишь ненамного ему

уступает. Среднее ее значение для шва по варианту «В» ($KCV_{-40} = 81,8 \, \text{Дж/см}^2$) является вполне приемлемым. Возможным резервом для обеспечения более высокой ударной вязкости швов при температурах –40 °C и ниже является легирование Ti–B.

Морфологию и особенности распределения в швах неметаллических включений (НМВ) исследовали на нетравленых шлифах с полированной поверхностью при увеличении 800. Установлено, что основная масса НМВ расположена относительно равномерно и представляет собой мелкие глобулярные оксиды сложного состава, состоящие из Mn, Al, Si, Ti, Ca, Fe в различных соотношениях.

В шве № 386, сваренном под флюсом ОК 10.74, размер большей части НМВ составляет 1,0...1,2 мкм (рис. 2, а). В отдельных полях зре-

Рис. 1. Внешний вид швов, выполненных одно- (a) и четырехдуговым (б) процессом сварки, сваренных под флюсом «В» из ШК флюса ОК 10.74 (×1,5)

Флюс	Voyana ampa wa	Номер шва	КСV, Дж/см ²						
	Количество дуг		−20 °C	−40 °C	−60 °C				
ОК 10.74	4	386	106,2203,7	77,1101,2	43,577,3				
A	1	400	95,2109,1 100,7	53,769,5	<u>33,455,5</u> 44,0				
В	4	405	85,1162,0 115,7	<u>60,896,8</u> 81,8	<u>30,371,1</u> 54,6				

Таблица 4. Ударная вязкость металла швов при сварке стали 10Г2ФБ

ния наблюдаются 1...2 более крупных включения величиной около 1,5 мкм (рис. 2, δ). При сварке под регенерированным флюсом по варианту «А» (шов № 400) общее количество НМВ незначительно увеличивается. Их размер составляет преимущественно 1,0...1,6 мкм (рис. 2, в). При этом возрастает также количество и размер крупных (более 1,5 мкм) включений, с большим содержанием кремния (рис. $2, \varepsilon$).

В шве № 405, сваренном под агломерированным флюсом по варианту «В», количество, распределение и размеры НМВ близки ко шву № 386, выполненному под исходным флюсом ОК 10.74, причем силикатные включения, наблюдавшиеся в шве № 400, отсутствуют (рис. 2, ∂ , e).

Особенности состава и морфологии структурных составляющих швов исследовали на шлифах после их травления в 4%-м спиртовом растворе азотной кислоты при увеличении 100 и 500. Микроструктура швов состоит из смеси различных форм феррита в различном их соотношении. Так, в шве № 386, сваренном под флюсом ОК 10.74, основной структурной составляющей является игольчатый феррит. Доля зернограничного поли-

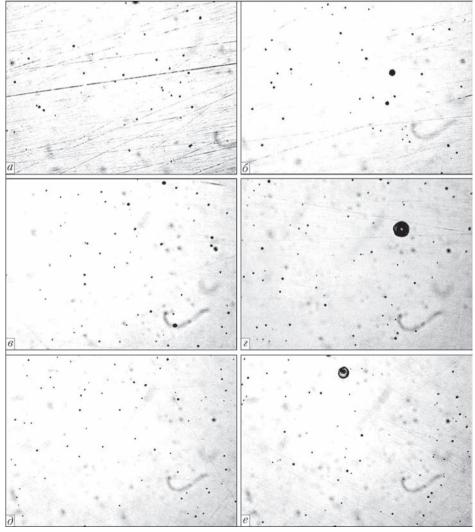


Рис. 2. Микроструктура (×800) НМВ в металле исследованных швов: a, b — шов № 368; b, c — 400; b, d — 405

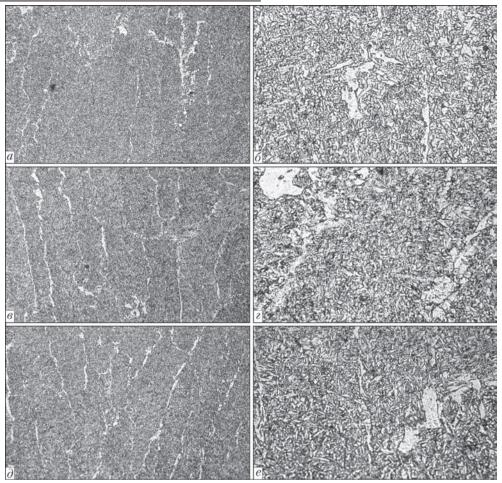


Рис. 3. Микроструктура металла исследованных швов: a, δ — шов № 368; ϵ , ϵ — 400; δ , ϵ — 405 (a, ϵ , δ — ×100; δ , ϵ , ϵ -×500)

гонального феррита, выделяющегося по границам в виде прослоек шириной от 6 до 16 мкм или цепочек отдельных зерен, не превышает 6 % (рис. 3, a, δ). Наблюдаются также единичные участки внутризеренного полигонального феррита, в том числе относительно крупные образования массивного феррита с неупорядоченной МАК-фазой (рис. 3, δ), которая выделяется также по границам наиболее крупных образований зернограничного и внутризеренного полигонального феррита.

В шве № 400, сваренном под регенерированным флюсом по варианту «А», доля зернограничного полигонального феррита увеличивается до 10...12 % (рис. 3, в). Увеличиваются также размеры образований внутризеренного массивного полигонального феррита, а ширина прослоек межзеренного полигонального феррита возрастает до 18...20 мкм (рис. $3, \varepsilon$), в связи с чем повышается количество скоплений МАК-фазы на их границах.

Микроструктура шва № 405, выполненного под агломерированным флюсом по варианту «В», близка к микроструктуре шва № 386, сваренного под флюсом ОК 10.74. Доля зернограничного полигонального феррита здесь несколько выше и составляет 7...9 %, а ширина его прослоек не превышает 18 мкм (рис. 3, ∂ , e). Размеры образований

массивного внутризеренного феррита с выделениями МАК фазы незначительно превышают размеры этой структурной составляющей в шве № 386 (рис. 3, e).

Микротвердость исследованных швов №№ 386, 400 и 405 находилась примерно на одном уровне и составляла *HV*5 — 227...230, *HV*5 — 219...221 и HV5 — 221...227, соответственно.

Таким образом, металлографическое исследование показало, что применение регенерированного флюса по варианту «А», изготовленного из ШК, по сравнению с оригинальным флюсом приводит к ухудшению структуры шва. В то же время структура шва, полученного при сварке под агломерированным флюсом, изготовленным из ШК флюса ОК 10.74 с дошихтовкой 5 % металлического марганца (вариант «В»), по всем исследованным параметрам близка к структуре шва, сваренного под оригинальным флюсом.

Выводы

Проведено исследование возможности использования ШК, образующейся при многодуговой сварке под агломерированным алюминатно-основным флюсом, для изготовления сварочных флюсов. На основе ШК флюса ОК 10.74 были изготовлены опытные флюсы по технологии регенерации (дробление ШК с последующим рассевом и магнитной сепарацией) и по технологии агломерирования с дошихтовкой 5 % металлического марганца.

Проведено сравнительное исследование сварочно-технологических свойств оригинального флюса ОК 10.74 и опытных флюсов при одно- и четырехдуговой сварке. Изучены химические составы металла швов, распределение в них неметаллических включений, особенности микроструктуры и определены показатели ударной вязкости металла швов.

Установлено, что флюс, изготовленный по методу агломерации с добавкой в состав шихты 5 мас. % марганца металлического, по всем этим показателям, включая ударную вязкость металла шва, близок к оригинальному флюсу ОК 10.74 и отвечает требованиям к сварным соединениям хладостойких газопроводных труб из сталей категории прочности до X80 включительно.

Применение флюса, изготовленного из ШК, по технологии регенерации, сопровождается определенным снижением уровня ударной вязкости металла шва и некоторым ухудшением внешнего вида сварного шва по сравнению со сваркой под оригинальным флюсом ОК 10.74. Поэтому решение о возможности использования регенерированного флюса при сварке должно приниматься в каждом конкретном случае с учетом требований к качеству сварных соединений.

- 1. *О форме* существования водорода в сварочных плавленых флюсах / И.А. Гончаров, В.С. Токарев, А.П. Пальцевич и др. // Автомат. сварка. – 2001. – № 4. – С. 28–32.
- 2. Подгаецкий В.В. Как использовать шлаковую корку // Там же. – 1961. – № 6. – С. 93–94.
- 3. Регенерация отходов флюса в трубосварочном производстве / В.Н. Колиснык, В.И. Галинич, В.Г. Кузьменко и др. // Там же. -1969. - № 8. - С. 66-67.
- 4. Использование шлаковой корки для выплавки флюса АН-60 / В.И. Галинич, В.Н. Колиснык, В.Ю. Котенжи и др. // Там же. – 1964. – № 11. – С. 86–91.
- 5. Кузьменко В.Г., Гончаров И.А. Особенности образования шлаковой корки при дуговой сварке // Там же. — 1997. — № 12. — С. 7–13.
- 6. Гончаров И.А., Токарев В.С., Кузьменко В.Г. Разработка флюса общего назначения на базе шлаковой корки флюса ÂH-60 // Прогресивна техніка і технологія машинобудування, приладобудування і зварювального виробництва. - Т. IV. - Київ: НТТУ «Київський політехнічний інститут», 1998. - С. 227-231.
- 7. Гончаров И.А., Пальцевич А.П., Токарев В.С. Низководородный сварочный флюс, обеспечивающий повышенную стойкость сварных швов к порообразованию // Сварщик. – 2002. – № 1. – С. 12–13.
- 8. *Murlin D*. The use of crushed slag as submerged arc welding flux // Welding J. -2010. $-N_2$ 8. -P. 41-44.
- 9. *H.P. Beck, A.R. Jackson*. Recycling SAW slag proves reliable and repeatable // Ibid. 1996. № 6. –P. 51–54.
- 10. Гончаров И.А., Токарев В.С. Разработка регенерированного сварочного флюса на основе шлаковой корки флюса OP-132 // Матералы междунар. науч.-техн. семинара «Современные сварочные флюсы и опыт их применения в промышленности». – Запорожье, 29–31 авг. 2005 г. – Киев: ИЭС им. Е.О. Патона НАН Украины, 2005. – C. 9, 10.

Поступила в редакцию 28.12.2015

Ассоциация «Электрод»

ООО Промышленная компания «ХОБЭКС электрод»

при поддержке

Российского научно-технического сварочного общества и Общества сварщиков Украины

IX Международная конференция «Дуговая сварка. Материалы и качество» Посвящается 50-летию Первой всесоюзной конференции по сварочным материалам (1966 г.)

и 25-летию создания ассоциации «Электрод» (1990 г.).

31 мая - 3 июня 2016 г.

г. Волгоград

Тематика конференции

- Совершенствование дуговых процессов сварки
- Разработка инновационных сварочных материалов
- Технологии производства материалов и подготовка кадров
- Качество и конкурентоспособность материалов

http://association-electrode.com; тел./факс: (+38044) 200 63 02. E-mail: office@association-electrode.com

Информационная поддержка: журнал «Автоматическая сварка»