УДК 621.791.(92+046)

## ОСОБЕННОСТИ УПРАВЛЕНИЯ ФОРМОЙ ВАЛИКА ПРИ ОДНОСЛОЙНОЙ МИКРОПЛАЗМЕННОЙ НАПЛАВКЕ НА КРОМКИ ЛОПАТОК АВИАЦИОННЫХ ГТД\*

П. Д. ЖЕМАНЮК $^1$ , И. А. ПЕТРИК $^1$ , С. Л. ЧИГИЛЕЙЧИК $^1$ , А. В. ЯРОВИЦЫН $^2$ , Г. Д. ХРУЩОВ $^2$ 

<sup>1</sup>АО «Мотор Сич», 69068, г. Запорожье, пр. Моторостроителей, 15. E-mail: motor@motorsich.com <sup>2</sup>ИЭС им. Е. О. Патона НАН Украины. 03680, г. Киев-150, ул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua

Ввиду необходимости увеличения размеров восстанавливаемых наплавкой поврежденных участков кромок лопаток авиационных ГТД из никелевых жаропрочных сплавов на высоту 5...15 мм при микроплазменной порошковой наплавке на узкую подложку менее 3 мм требуется уточнение закономерностей формообразования наплавляемого металла. Для условий соответствующей однослойной наплавки исследован диапазон изменения энергетических показателей процесса в системе «эффективная тепловая мощность дуги-погонная энергия-площадь поперечного сечения наплавленного валика» и оценена действенность технологического управления поперечным сечением наплавляемого слоя. Установлено, что в условиях ограниченной глубины проплавления основного металла площадь поперечного сечения наплавляемого валика наиболее эффективно регулируется за счет изменения погонной энергии в диапазоне 100...1600 Дж/мм. Предполагается, что установленная технологическая взаимосвязь между величиной погонной энергии, высотой и площадью поперечного сечения наплавляемого валика будет способствовать формированию дополнительных критериев предотвращения образования трещин в сварном соединении «основной - наплавленный металл» при восстановлении деталей авиационных двигателей из никелевых жаропрочных сплавов многослойной микроплазменной порошковой наплавкой. Библиогр. 18, табл. 4, рис. 8.

Ключевые слова: микроплазменная порошковая наплавка, никелевый жаропрочный и кобальтовый жаростойкий сплав, узкая подложка, эффективная тепловая мощность дуги, погонная энергия, термический КПД, площадь поперечного сечения наплавленного валика

Одной из областей применения дуговой наплавки на узкую подложку [1] шириной до 3 мм является серийный ремонт поврежденных или изношенных кромок лопаток авиационных газотурбинных двигателей (ГТД) [2-8]. Рабочие лопатки серийно ремонтируемых авиационных двигателей Д18Т, Д436, АИ222, АИ-450 изготовлены из никелевых жаропрочных сплавов с поликристаллической структурой (ЖС6У-ВИ, ЖС6К-ВИ) или из сплавов с направленной кристаллизацией (ЖС32-ВИ, ЖС26-ВИ) [9]. Данные высоколегированные материалы, содержащие 55 и более об. % ү'-фазы, предназначены для эксплуатации при температурах 1000...1100 °C и отличаются высокой склонностью к образованию трещин при сварке плавлением и/или при последующей термической обработке [9, 10]. Аргонодуговая сварка применялась для восстановления таких деталей более 40 лет, однако ремонт кромок лопаток был ограничен глубиной до 2 мм, а присадочный металл уступал основному металлу по жаропрочности [2, 3].

Более 10 лет в АО «Мотор Сич» и ГП «Ивченко-Прогресс» для ремонта авиационных рабочих лопаток из данных сплавов с наработкой более 3...5 тыс. ч успешно применяется микроплазменная порошковая наплавка [4-8]. В данном процессе широко используются несколько марок присадочных порошков — в частности никелевый жаропрочный сплав ЖС32 [4-8] и кобальтовый жаростойкий и износостойкий сплав ВЗК [5, 8].

На сегодняшний день серийное ремонтное производство ставит требования к увеличению размеров восстанавливаемых наплавкой поврежденных участков лопаток (торцы бандажных полок, лабиринтных гребешков, Z-образных профилей и пера лопаток) на высоту до 5...15 мм ввиду соответствующего увеличения размеров зон износа, прогаров и термоусталостных трещин, развивающихся в процессе эксплуатации данных деталей. Их реставрацию можно охарактеризовать как процесс многослойной наплавки, в котором сварное соединение «основной-наплавленный металл» может быть в определенных условиях склонным к образованию микро- и макротрещин [6, 10, 11]. В свою очередь многослойную наплавку с некоторым приближением можно представить как совокупность однослойных валиков. Соответственно, актуально расширение представлений о границах диапазона энергетических показателей однослойной наплавки с целью рационального выбора такого уровня и способов дозирования тепловложений в изделие, при которых обеспечивается

<sup>\*</sup> По материалам доклада, представленного на международной конференции «Современные технологии сварки», 13-15 июля 2016 г., г. Киев, ИЭС им. Е. О. Патона НАН Украины.

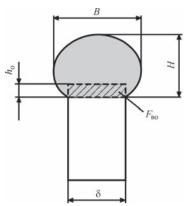



Рис. 1. Схема измерения размеров наплавленного валика: δ ширина узкой подложки; B — ширина валика; H — высота валика;  $h_{_{\rm O}}, F_{_{\rm BO}}$  — глубина проплавления и площадь поперечного сечения переплавленного основного металла

технологическая прочность данного сварного соединения, т. е. не проявляется склонность выше указанных материалов к образованию трещин при сварке плавлением.

Одной из составляющих данной задачи является выявление закономерностей и дальнейшая оптимизация технологического управления формой валика, наплавляемого на узкую подложку. Помимо рационального выбора объема наплавляемого металла при ручной и автоматической (роботизированной) наплавке это позволит также оптимизировать размеры боковых усилений валика p = $= 0.5(B - \delta)$  в его поперечном сечении (рис. 1).

В свою очередь боковые усиления наплавленного валика являются припусками, удаляемыми механической обработкой при формировании заданной геометрии восстановленного наплавкой элемента. Ввиду опасности образования прижогов и шлифовочных трещин абразивную обработку деталей из никелевых жаропрочных сплавов проводят с использованием специальных режимов, оборудования и абразивных кругов [12, 13]. При этом используют пониженные скорости вращения абразивного инструмента (до 25 м/с) и подачи (350...750 мм/мин), ограничивая интенсивность съема обрабатываемого материала [13]. Таким образом, механическая обработка наплавленного металла, помимо технической сложности формообразования соответствующих профильных поверхностей лопатки, является весьма трудоемким процессом, дополнительно требующим привлечения высококвалифицированных специалистов, дорогостоящих оборудования и материалов. Соответственно, уменьшение ширины наплавляемого валика в значительной мере способствует уменьшению трудоемкости и повышению экономической эффективности ремонта лопатки.

Целью данной работы являлась оценка диапазона эффективной тепловой мощности микроплазменной дуги (предварительно определялась по методике проточного калориметрирования [1] для соответствующего значения сварочного тока) и погонной энергии для условий однослойной наплавки на узкую подложку шириной  $\delta = 0.3...3.0$  мм на режимах, близких к оптимальным, и установление базовых закономерностей технологического управления формой поперечного сечения наплавляемого валика.

В качестве основного металла использовались образцы из стали 12Х18Н10Т размерами 90...100×30...40 мм толщиной 0,3...3,0 мм. Наплавка на режимах, описанных ранее в работе [8], выполнялась в условиях свободного формирования валика на торце пластины, установленной вертикально в тисках. Расстояние от наплавляемой поверхности до медных губок тисков составляло не менее 20 мм, от внешнего среза плазмотрона до образца — 5 мм. В качестве присадки применялись порошки сплавов ЖС32 и В3К фракцией соответственно 63...-160 мкм и 53...-150 мкм, с разной температурой плавления (примерно на 70...90 °C) и жидкотекучестью расплавленного металла сварочной ванны. В качестве плазмообразующего и транспортирующего газа использовался аргон высшего сорта по ГОСТ 10157-79. Эксперименты проводились на двух типах оборудования, различающихся видом подачи дисперсной присадки, степенью сжатия микроплазменной дуги и скважностью S импульсного сварочного тока:

- установка STARWELD 190H, плазмотрон НРН80 (диаметры каналов сопел: плазменного  $d_{\text{пл}}$  = 2 мм, фокусирующего  $d_{\phi}$  = 3 мм), фирма Кепnametal Stellite Gmbh – непрерывная подача порошка (расход транспортирующего газа  $Q_{\rm TD}$  = 3 л/мин),  $S \approx 1.5$ ;

- установка УПНС304М2/М3, плазмотрон ППС04 ( $d_{\rm пл}=2,5$  мм,  $d_{\dot{\Phi}}=4,5$  мм) — порционная подача порошка ( $Q_{\rm тp}=2$  л/мин),  $S\approx4,5$ .

Обработка экспериментальных данных проводилась с помощью регрессионных зависимостей величины эффективной тепловой мощности микроплазменной дуги  $q_u$  от сварочного тока I, ранее полученных с использованием методики проточного калориметрирования [1]. Погонная энергия  $q_y/v$  определялась по методике работы [11]:

$$q_{_{\mathrm{H}}}/v = Q_{\Sigma}/L,\tag{1}$$

где  $Q_{\Sigma}$  — тепловложения в анод с учетом эффективного КПД нагрева изделия [1, 11]; L — приведенная длина эллиптического цилиндра валика. Площади поперечного сечения наплавленного валика  $F_{_{\mathrm{B}}}$  и наплавленного металла в нем  $F_{_{\mathrm{BH}}} = F_{_{\mathrm{B}}} - F_{_{\mathrm{BO}}}$ определялись расчетом по методике работы [14] на основании измерений ширины, высоты валика и глубины проплавления основного металла с точностью до 0,05 мм согласно рис. 1. Термический КПД для наплавляемого металла ЖС32 опреде-

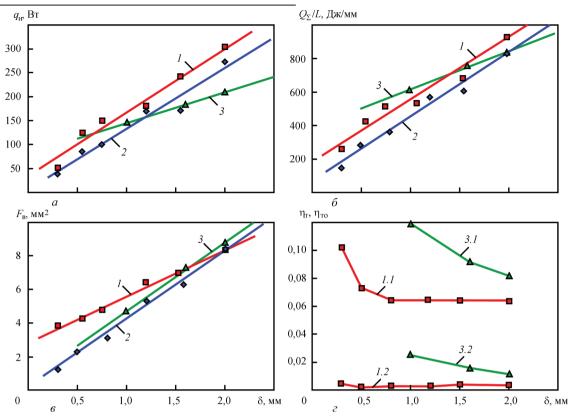



Рис. 2. Влияние ширины узкой подложки  $\delta$  на эффективную тепловую мощность микроплазменной дуги  $q_u(a)$ , погонную энергию  $Q_{\Sigma}/L$  (б), площадь поперечного сечения наплавленного валика  $F_{\mathfrak{g}}$  (в) и термический КПД  $\mathfrak{h}_{\mathfrak{r}}$  (г): I — наплавка сплава ЖС32, установка Starweld 190H, непрерывная подача порошка, защитный газ Ar; 1.1 — полный термический КПД процесса η<sub>x</sub>; 1.2 — составляющая термического КПД, расходуемая на плавление основного металла; 2 — наплавка сплава ВЗК, установка Starweld 190H, постоянная подача порошка, защитный газ Ar; 3 — наплавка сплава ЖС32, установка УПНС-304М2/М3, порционная подача порошка, защитный газ 95 % Ar + 5 %  $H_2$ ; 3.1 — полный термический КПД процесса  $\eta_r$ ; 3.2 — составляющая термического КПД, расходуемая на плавление основного металла

лялся расчетным путем [11] исходя из площади его поперечного сечения  $F_{\rm BH}$ :

$$\eta_{\rm TH} = \frac{M_{\rm H} H_{\rm M}}{q_{\rm H}},\tag{2}$$

где  $H_{\rm M}$  = 861,2 и 1312,6 Дж — удельная энтальпия 1 г соответственно наплавленого метала ЖС32 и основного металла 12Х18Н10Т.

Первоначально были оценены закономерности изменения энергетических показателей процесса микроплазменной порошковой наплавки и показателей формы валика для узкой подложки  $\delta =$ = 0,3...2,0 мм (рис. 2 и табл. 1). Установлено, что эффективная тепловая мощность микроплазменной дуги изменяется в диапазоне 30...330 Вт, погонная энергия процесса 100...1000 Дж/мм, производительность наплавки 0,3...1,3 г/мин; площадь поперечного сечения валика 1...9 мм<sup>2</sup>. Зависимости  $q_{_{\rm H}}(\delta),\,Q_{\Sigma}/L(\delta)$  и  $F_{_{\rm B}}(\delta)$  близки к линейной. Полученные результаты свидетельствуют об определенном влиянии на энергетические показатели процесса химического состава присадки (ЖС32, ВЗК) и способ подачи дисперсной присадки (непрерывный, порционный), что позволяет расширить представления об известных способах технологического регулирования тепловложений в изделие (сварочный ток, степень сжатия плазменной дуги, рациональный выбор состава защитного газа [1, 4]). Указанные технологические факторы в диапазоне  $q_{\rm u}$  < 150 Вт и  $\delta$  < 1,2 мм также оказывают заметное влияние на уменьшение поперечного сечения наплавляемого валика. Полный термический КПД процесса наплавки на узкую подложку  $\delta = 0,3...2,0$  мм, как правило, не превышает  $\eta_{\rm T} =$ = 6...10 %, причем часть эффективной мощности  $q_{\rm u}$ , расходуемая на плавление основного металла, составляет  $\eta_{TO} = 0.16...2.5$  %. Доля основного металла в наплавленном ограничена в диапазоне 5...15 %, что соотносится с оптимальными режимами плазменно-порошковой наплавки [1].

Установленный диапазон значений коэффициента формы валика В/Н в пределах 0,77...1,22 (см. табл. 1) позволил уточнить технологически вероятные схемы формообразования наплавляемого валика [14] при варьировании ряда технологических факторов микроплазменной порошковой наплавки: ширины узкой подложки; эффективной тепловой мощности дуги и производительности. Для  $\delta = 0,3...2,0$  мм в зависимости от вязкости расплавленного металла сварочной ванны (т. е. наплавляемого металла, так как  $\gamma_0 \rightarrow min$ ) характер-

| δ, мм                                                                                                                                                       | γ <sub>0</sub> , % |          |         |          | B/H      |         | $M_{_{ m H}}$ , г/мин |          |         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|---------|----------|----------|---------|-----------------------|----------|---------|--|
|                                                                                                                                                             | ЖС32 (н)           | ЖС32 (п) | В3К (н) | ЖС32 (н) | ЖС32 (п) | В3К (н) | ЖС32 (н)              | ЖС32 (п) | В3К (н) |  |
| 0,3                                                                                                                                                         | 9,97               | _        | 9,26    | 0,787    | _        | 1,054   | 0,351                 | 351 –    |         |  |
| 0,55                                                                                                                                                        | 5,11               | _        | 5,04    | 0,772    | _        | 1,041   | 0,645                 | 0,645 -  |         |  |
| 0,75                                                                                                                                                        | 8,98               | _        | 8,5     | 0,857    | _        | 0,930   | 0,639                 | _        | 0,366   |  |
| 1,0                                                                                                                                                         | _                  | 14,16    |         | _        | 1,201    | _       | _                     | 1,043    | _       |  |
| 1,2                                                                                                                                                         | 11,46              | _        | 13,55   | 0,933    | _        | 0,936   | 0,826                 | 0,826 -  |         |  |
| 1,55                                                                                                                                                        | 12,11              | 13,37    | 15,39   | 1,216    | 1,113    | 1,000   | 1,013                 | 0,872    | 0,711   |  |
| 2,0                                                                                                                                                         | 11,19              | 10,64    | 10,31   | 1,032    | 1,206    | 0,969   | 1,276 0,958           |          | 1,261   |  |
| 2,0   11,19   10,64   10,31   1,032   1,206   0,969   1,276   0,958   1,<br>Примечание: (н) и (п) – соответственно непрерывная и порционная подача порошка. |                    |          |         |          |          |         |                       |          |         |  |

Таблица 1. Влияние ширины узкой подложки  $\delta$  на долю основного металла $\gamma_o$ , производительность наплавки  $M_{
m H}$  и коэффициент формы валика В/Н при микроплазменной порошковой наплавке сплавов ЖС32 и ВЗК

ны следующие изменения формы поперечного сечения наплавленных валиков:

- при повышенной вязкости (сплав ЖС32) по закону увеличивающегося эллипса с H > B при  $\delta < 0.8$  мм и B > H при  $\delta > 1.5$  мм;
- при повышенной жидкотекучести (сплав ВЗК) — по закону увеличивающегося круга с  $H \approx B$ .

Рассмотренные выше способы технологического влияния на форму и размеры наплавляемого на узкую подложку валика следует отнести к пассивным, так как они могут быть выбраны лишь до начала наплавки. Известно [1, 4], что технологическим параметром сжатой дуги, в первую очередь определяющим ее эффективную тепловую мощность, является сварочный ток. Соответственно, она достаточно легко может технологически управляться в процессе восстановительной наплавки, в частности — при изменении ширины узкой подложки при локальном ремонте лопаток сложной геометрии [4-8]. Поэтому в данной работе также оценивалась возможность управления формой валика за счет применения импульсного сварочного тока с различной скважностью S.

Исследования проводились параллельно для дисперсных присадочных материалов ВЗК (установка STARWELD 190H,  $S \approx 1.5$ ) и ЖС32 (установка УПНС304М2/М3,  $S \approx 4.5$ ). Дополнительно, кроме наплавки постоянным сварочным током (режим 1), рассматривалось 2 типа импульсных режимов:

режим 2: 
$$I_{\text{имп}} < I_{6}$$
,  $I_{\Pi} < I_{6}$ ; режим 3:  $I_{\text{имп}} > I_{6}$ ,  $I_{\Pi} < I_{6}$ ;

режим 2:  $I_{\text{имп}} < I_{6}, I_{\Pi} < I_{6};$  режим 3:  $I_{\text{имп}} > I_{6}, I_{\Pi} < I_{6};$  где  $I_{6}$  — базовое значение величины постоянного сварочного тока;  $I_{\text{имп}}, I_{\Pi}$  — соответственно значения сварочного тока при импульсе и паузе.

Закономерности изменения энергетических показателей процесса микроплазменной порошковой наплавки и формы валика для узкой подложки  $\delta = 0,3...2,0$  мм представлены на рис. 3, табл. 2 и рис. 4, табл. 3 для условий наплавки сплавов ВЗК и ЖС32, соответственно. В зависимости от величины скважности импульса сварочного тока при наплавке на узкую подложку  $\delta \le 2$  мм на режиме 3 отмечено различное положение зависимостей  $q_{\mu}(\delta), Q_{\Sigma}/L(\delta)$  и  $F_{\mu}(\delta)$  относительно аналогичных при наплавке на постоянном токе (см. рис. 3, 4).

Полученные результаты свидетельствуют о возможности эффективного управления размерами поперечного сечения валика, наплавляемого

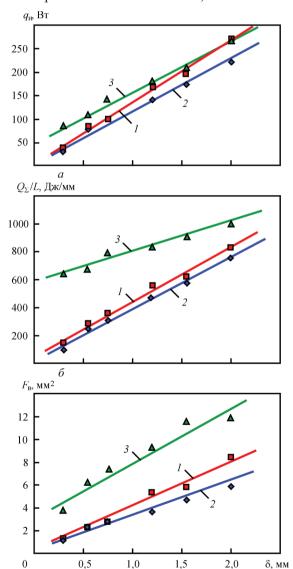



Рис. 3. Влияние ширины узкой подложки δ на эффективную тепловую мощность микроплазменной дуги  $q_{_{\mathrm{H}}}(a)$ , погонную энергию  $Q_{\Sigma}/L$  (б), площадь поперечного сечения наплавленного валика  $F_{_{\rm R}}\left( e\right)$ . Наплавка сплава ВЗК, защитный газ Ar, установка Starweld 190H, непрерывная подача порошка: 1 постоянный; 2, 3 — импульсный сварочный ток

Т а б л и ц а  $\,$  2 . Влияние ширины узкой подложки  $\delta$  на долю основного металла  $\gamma_{_0}$ , производительность наплавки  $M_{_{\rm H}}$ и коэффициент формы валика B/H при микроплазменной порошковой наплавке с $\overline{n}$ лава ВЗК на постоянном (режим 1) и импульсном токе (режим 2, 3)

| δ, мм | γ <sub>0</sub> , % |         |         | $M_{_{ m H}}$ , г/мин |         |         | B/H     |         |         |  |
|-------|--------------------|---------|---------|-----------------------|---------|---------|---------|---------|---------|--|
|       | Режим 1            | Режим 2 | Режим 3 | Режим 1               | Режим 2 | Режим 3 | Режим 1 | Режим 2 | Режим 3 |  |
| 0,3   | 9,26               | 7,47    | 4,73    | 0,157                 | 0,116   | 0,251   | 1,05    | 0,71    | 0,72    |  |
| 0,55  | 5,04               | 7,31    | 1,67    | 0,333                 | 0,287   | 0,332   | 1,04    | 0,90    | 0,85    |  |
| 0,75  | 8,50               | 13,37   | 4,64    | 0,366                 | 0,329   | 0,456   | 0,93    | 1,06    | 0,74    |  |
| 1,2   | 13,55              | 14,12   | 8,20    | 0,534                 | 0,485   | 0,785   | 0,94    | 0,92    | 0,83    |  |
| 1,55  | 15,39              | 8,47    | 6,48    | 0,711                 | 0,616   | 1,042   | 1,00    | 0,92    | 0,79    |  |
| 2,0   | 10,31              | 11,32   | 6,74    | 1,260                 | 0,678   | 1,496   | 0,97    | 1,16    | 0,80    |  |

на узкую подложку, за счет рационального выбора параметров импульсного сварочного тока. Также при наплавке на импульсном сварочном токе сплава ВЗК несколько уменьшается (на 2...5 %) доля основного металла по сравнению с наплавкой на постоянном токе (см. табл. 2) и становится возможным формообразование наплавляемого валика по закону увеличивающегося эллипса с H > B для всего диапазона ширины узкой подложки  $\delta = 0,3...2,0$  мм. При наплавке на импульсном токе сплава ЖС32 возможности уменьшения доли основного металла и управления коэффициентом формы валика за счет применения импульсных режимов несколько ограничены (см. табл. 3).

Исследования влияния скорости микроплазменной порошковой наплавки сплавов ЖС32 и ВЗК на энергетические показатели процесса и площадь поперечного сечения валика выполнялись в режиме автоматической наплавки постоянным сварочным током на роботизированной установке 190НР. Установлено (рис. 5), что при увеличении скорости наплавки на узкую подложку шириной  $\delta = 0.3...3.0$  мм с 1,2 до 3,6 м/ч площадь поперечного сечения наплавленного валика  $F_{\rm \tiny R}$  снижается в среднем в 3 раза, а погонные тепловложения в изделие  $Q_{\Sigma}/L$  – в 4 раза. Производительность наплавки на узкую подложку  $\delta = 3.0$  мм в рассматриваемом диапазоне скоростей по данным рис. 5 составляет примерно 3 г/мин

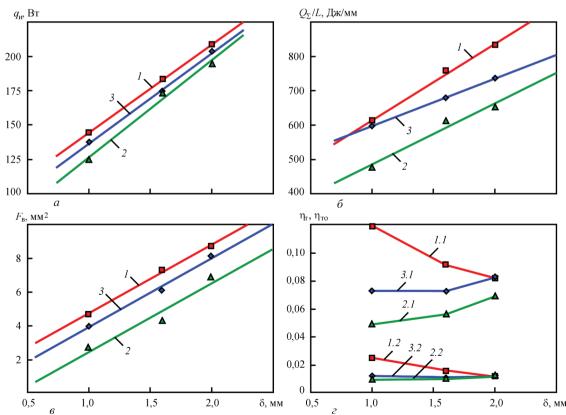



Рис. 4. Влияние ширины узкой подложки  $\delta$  на эффективную тепловую мощность микроплазменной дуги  $q_u(a)$ , погонную энергию  $Q_{\Sigma}/L$  (б), площадь поперечного сечения наплавленного валика  $F_{\mathbb{R}}$  (в) и термический КПД  $\mathfrak{\eta}_{\mathbb{T}}$  (г) при изменении ширины узкой подложки б. Наплавка сплава ЖС32, защитный газ 95 % Аг + 5 % Н<sub>2</sub>, установка УПНС-304М2/М3, порционная подача порошка: 1 — постоянный сварочный ток; 2, 3 — импульсный сварочный ток (режимы 2 и 3); 1.1, 2.1, 3.1 — полный термический КПД процесса  $\eta_{r}$ ; 1.2, 2.2, 3.2 — составляющая термического КПД  $\eta_{ro}$ , расходуемая на плавление основного металла

Таблица 3. Влияние ширины узкой подложки  $\delta$  на долю основного металла $\gamma_0$ , производительность наплавки  $M_{\rm H}$  и коэффициент формы валика B/H при микроплазменной порошковой наплавке сплава ЖС32 на постоянном (режим 1) и импульсном токе (режим 2, 3)

| δ, мм | γ <sub>0</sub> , % |         |         | $M_{_{ m H}}$ , г/мин |         |         | B/H     |         |         |  |
|-------|--------------------|---------|---------|-----------------------|---------|---------|---------|---------|---------|--|
|       | Режим 1            | Режим 2 | Режим 3 | Режим 1               | Режим 2 | Режим 3 | Режим 1 | Режим 2 | Режим 3 |  |
| 1,0   | 17,17              | 15,09   | 11,57   | 0,950                 | 0,344   | 0,585   | 1,04    | 0,89    | 0,79    |  |
| 1,55  | 12,61              | 15,9    | 13,64   | 0,970                 | 0,557   | 0,750   | 1,11    | 1,07    | 1,22    |  |
| 2,0   | 10,63              | 13,7    | 11,08   | 1,020                 | 0,773   | 1,004   | 1,21    | 1,11    | 1,07    |  |

и приближается к производительности подачи порошка.

Дополнительно показано (см. табл. 4), что применение дисперсной присадки при микроплазменной наплавке является более предпочтительным

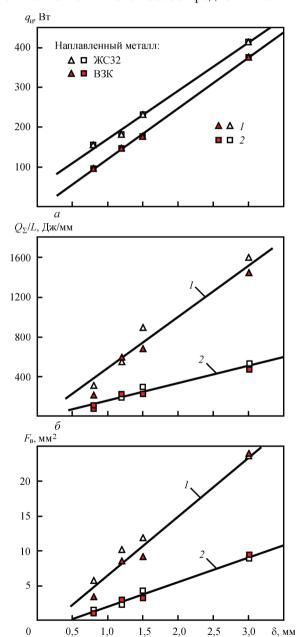



Рис. 5. Влияние ширины узкой подложки  $\delta$  и средней скорости наплавки на эффективную тепловую мощность микроплазменной дуги  $q_{_{\rm H}}(a)$ , погонную энергию  $Q_{_{\rm S}}/L$  ( $\delta$ ), площадь поперечного сечения наплавленного валика  $F_{_{\rm B}}$  (s): I=1,2; 2=3,6 м/ч. Роботизированная установка Starweld 190H, постоянная подача порошка, защитный газ Ar

по сравнению с присадкой из микропроволоки, так как позволяет снизить эффективную тепловую мощность дуги более чем в 2 раза, погонную энергию — в 1,8 раза, а производительность наплавки повысить в 1,8 раза. Также, исходя из данных работы [15], снижение погонных тепловложений до уровня лазерно-порошковой наплавки при микроплазменной порошковой наплавке возможно с увеличением ее скорости примерно до 22,6 м/ч.

Оценка совместного и раздельного влияния технологических факторов эффективной тепловой мощности микроплазменной дуги и погонной энергии на форму поперечного сечения валика выполнялась путем анализа целевых функций [18]  $\varepsilon_{q_{\rm u}}, \varepsilon_{Q_{\Sigma}/L}$  и  $\varepsilon_F$  в виде отношения величин эф-

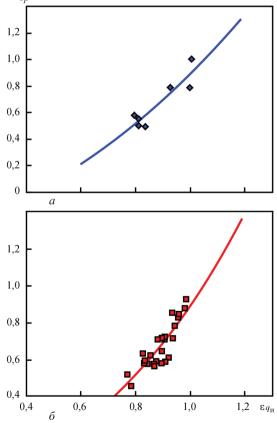



Рис. 6. Зависимость относительной площади поперечного сечения наплавленного валика  $\varepsilon_F$  от относительной эффективной тепловой мощности микроплазменной дуги  $\varepsilon_q$  при микроплазменной порошковой наплавке на узкую подлюжку: a — сплав ВЗК, установка Starweld 190H, непрерывная подача порошка, защитный газ Аг,  $\delta=0,3...3,0$  мм;  $\delta$  — установка УПНС-304М2/М3, порционная подача порошка, защитный газ 95 % Ar + 5 %  $H_2$ ,  $\delta=1,0...2,0$  мм

Таблица 4. Сравнение характеристик поперечного сечения валика  $(B, H, \gamma_o)$ , эффективной мощности нагрева изделия  $q_{..}$ , погонной энергии  $Q_{s}/L$  и производительности наплавки  $M_{..}$  при микроплазменной и лазерной наплавке

|                             |                                                                                                  | н .                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Наплавляемый материал       | В, мм                                                                                            | Н, мм                                                                                                                           | $q_{_{\mathrm{H}}}$ , Bt                                                                                                                                                                                               | γ <sub>0</sub> , %                                                                                                                                                                            | $Q_{\Sigma}\!/L,$<br>Дж/мм                                                                                                                                                                                                                                                   | $M_{_{ m H}},$ г/мин                                                                                                                                                                                                                                                                                     | Источ-<br>ник                                                                                                                                                                                                                                                                                                                                                 |
| Порошок H13 tool steel      | 2,0                                                                                              | 0,2                                                                                                                             | ≈280*1                                                                                                                                                                                                                 |                                                                                                                                                                                               | ≈ 45*¹                                                                                                                                                                                                                                                                       | 1,0                                                                                                                                                                                                                                                                                                      | [15]*3                                                                                                                                                                                                                                                                                                                                                        |
| Проволока AISI P20 Ø 0,3 мм | 1,9±0,06                                                                                         | $0,9 \pm 0,04$                                                                                                                  | 400                                                                                                                                                                                                                    | 5,12±0,12                                                                                                                                                                                     | 380,95                                                                                                                                                                                                                                                                       | 0,47                                                                                                                                                                                                                                                                                                     | [16] *3                                                                                                                                                                                                                                                                                                                                                       |
| Порошок ВЗК, 53160 мкм      | 2,0                                                                                              | 1,8                                                                                                                             | 150                                                                                                                                                                                                                    | ≈ 15                                                                                                                                                                                          | 211,7                                                                                                                                                                                                                                                                        | 0,87                                                                                                                                                                                                                                                                                                     | Данная<br>работа* <sup>2</sup>                                                                                                                                                                                                                                                                                                                                |
| Порошок Ті–6АІ–4V           | 1,92,1                                                                                           | 0,150,22                                                                                                                        | 400                                                                                                                                                                                                                    |                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                           | 1,00                                                                                                                                                                                                                                                                                                     | [17] *3                                                                                                                                                                                                                                                                                                                                                       |
|                             | Наплавляемый материал Порошок H13 tool steel Проволока AISI P20 Ø 0,3 мм Порошок В3К, 53–160 мкм | Наплавляемый материал <i>В</i> , мм Порошок H13 tool steel 2,0 Проволока AISI P20 Ø 0,3 мм 1,9±0,06 Порошок В3К, 53–160 мкм 2,0 | Наплавляемый материал       В, мм       Н, мм         Порошок Н13 tool steel       2,0       0,2         Проволока AISI Р20 Ø 0,3 мм       1,9±0,06       0,9±0,04         Порошок ВЗК, 53−160 мкм       2,0       1,8 | Наплавляемый материал $B$ , мм $H$ , мм $q_{_{\rm H}}$ , Вт Порошок H13 tool steel $2$ ,0 0,2 ≈280*1 Проволока AISI P20 Ø 0,3 мм 1,9±0,06 0,9±0,04 400 Порошок В3К, 53−160 мкм $2$ ,0 1,8 150 | Наплавляемый материал $B$ , мм $H$ , мм $q_{_{\rm H}}$ , Вт $\gamma_{_{\rm O}}$ , % Порошок H13 tool steel $2$ ,0 $0$ ,2 $\approx 280*^{1}$ Проволока AISI P20 Ø 0,3 мм $1$ ,9±0,06 $0$ ,9± 0,04 $400$ $5$ ,12±0,12 Порошок В3К, 53–160 мкм $2$ ,0 $1$ ,8 $150$ $\approx 15$ | Наплавляемый материал $B$ , мм $H$ , мм $q_{_{\rm H}}$ , Вт $\gamma_{_{\rm O}}$ , % $Q_{\Sigma}/L$ , Дж/мм Порошок H13 tool steel 2,0 0,2 $\approx 280^{*1}$ $\approx 45^{*1}$ Проволока AISI P20 Ø 0,3 мм 1,9±0,06 0,9±0,04 400 5,12±0,12 380,95 Порошок В3К, 53–160 мкм 2,0 1,8 150 $\approx 15$ 211,7 | Наплавляемый материал $B$ , мм $H$ , мм $q_{_{\rm H}}$ , Вт $\gamma_{_{\rm O}}$ , % $Q_{\Sigma}/L$ , $M_{_{\rm H}}$ , $\gamma_{_{\rm IMH}}$ Порошок H13 tool steel $2$ ,0 0,2 $\approx 280^{*1}$ $\approx 45^{*1}$ 1,0 Проволока AISI P20 Ø 0,3 мм 1,9±0,06 0,9±0,04 400 5,12±0,12 380,95 0,47 Порошок В3К, 53–160 мкм $2$ ,0 1,8 150 $\approx 15$ 211,7 0,87 |

Примечания:  $^{*1}$  – оценка авторов статьи по данным параметров режимов [15];  $^{*2}$  – однослойная наплавка на узкую подложку  $\delta = 1.2$  мм; \*3 – многослойная наплавка.

фективной тепловой мощности микроплазменной дуги, погонной энергии и площадей поперечного сечения наплавленного валика при текущем режиме наплавки и базовом, соответственно. Базовым режимом, как правило, являлся режим наплавки на постоянном сварочном токе. Значения целевой функции  $\varepsilon_{\scriptscriptstyle E}$  оценивали при варьирующихся технологических факторах в виде различных режимов импульсного сварочного тока ( $I_{\rm имп} < I_{\rm 6}, I_{\rm n} < I_{\rm 6}$  и  $I_{\rm имп} > I_{\rm 6}, I_{\rm n} < I_{\rm 6}$ ) и скорости наплавки, которые учитывались через показатели эффективной тепловой мощности микроплазменной дуги и погонной энергии. Регрессионные зависимости изменения целевых функций  $\varepsilon_F=f(\varepsilon_{q_{_{\parallel}}})$  и  $\varepsilon_F=f(\varepsilon_{q_{_{\parallel}}},\varepsilon_{\mathcal{Q}_{\Sigma^{/L}}})$  )относительно их базового уровня ( $\varepsilon_{q_{_{\parallel}}}=1$ ;  $\varepsilon_{\mathcal{Q}_{\Sigma^{/L}}}=1$ ;  $\varepsilon_{\scriptscriptstyle F}=1$ ) представлены в виде двухмерного й трехмерного (контурного) графиков на рис. 6, 7.

Установлено, что снижение эффективной тепловой мощности микроплазменной дуги на 20 % вызывает уменьшение площади поперечного сечения наплавленного валика на 30...50 % соответственно для сплавов ВЗК и ЖС32. При этом для импульсного сварочного тока соотношение ширины B к высоте наплавленного валика H, как правило, находится в пределах 0,7...0,92.

Изменение погонной энергии наплавки (преимущественно за счет ее скорости), особенно в сочетании с некоторым увеличением эффективной тепловой мощности микроплазменной дуги, более существенно влияет на форму валика, наплавляемого на узкую подложку (см. рис. 6, 7). При наплавке с непрерывной подачей порошка увеличение погонной энергии в 2...3 раза позволяет на столько же увеличить площадь поперечного сечения валика, а в сочетании с одновременным увеличением эффективной тепловой мощности микроплазменной дуги на 70 % — до 3,6 раз (см. рис. 7, а). При наплавке с порционной подачей порошка увеличение погонной энергии в 2,5 раза позволяет увеличить площадь поперечного сечения наплавленного валика до 3,5 раз, а в сочетании с одновременным увеличением эффективной тепловой мощности микроплазменной дуги на 10...30 % — до 5,5...6 раз (см. рис. 7, б). Одновременное снижение эффективной мощности микроплазменной дуги и погонной энергии на 20...30 % относительно базового уровня значений  $\mathbf{\epsilon}_{q_{_{\mathbf{u}}}},\mathbf{\epsilon}_{\mathcal{Q}_{\mathbf{v}}/L}$  позволяет уменьшить площадь поперечного сечения валика в 1,5...2,0 раза (см. рис. 7).

Проведенный анализ экспериментальных данных, приведенных на рис. 2-7, позволил выделить 3 базовых закона изменения поперечного сечения валика, наплавленного на узкую подложку шириной  $\delta = 0.5...3.0$  мм. Первый из них обусловлен изменением ширины узкой подложки (рис. 8, а)

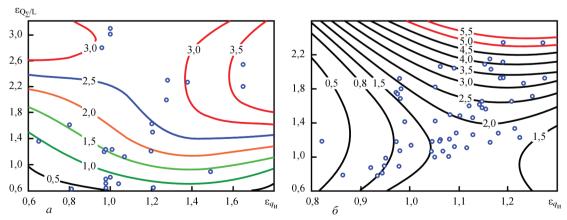



Рис. 7. Контурный график изменения относительной площади поперечного сечения наплавленного валика  $\varepsilon_F$  от относительной эффективной тепловой мощности микроплазменной дуги  $\mathfrak{e}_{q_{_{\mathrm{H}}}}$  и относительной погонной энергии микроплазменной наплавки  $\mathfrak{E}_{Q_{\Sigma}/L}$ : a — сплава ВЗК, установка Starweld 190H, непрерывная подача порошка, защитный газ Ar,  $\delta$  = 0,3...3,0 мм;  $\delta$  установка УПНС-304М2/М3, порционная подача порошка, защитный газ 95 % Ar + 5 %  $H_2$ ,  $\delta$  = 1,0...2,0 мм

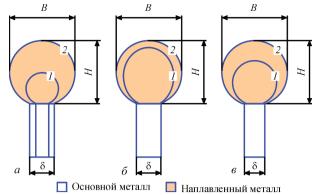



Рис. 8. Базовые закономерности изменения формы поперечного сечения валика при наплавке на узкую подложку в зависимости от: ширины узкой подложки (а), изменяющейся эффективной тепловой мощности микроплазменной дуги ( $\delta$ ), изменяющейся погонной энергии ( $\epsilon$ ); 1 $\rightarrow$ 2 — направление изменения сечения валика

при постоянной скорости наплавки: при ее расширении в 6 раз необходимая для наплавки эффективная тепловая мощность микроплазменной дуги увеличивается в 4...8 раз, что сопровождается увеличением площади поперечного сечения валика в 8...12 раз. Второй обусловлен изменением эффективной тепловой мощности микроплазменной дуги на ±20 % при постоянной ширине узкой подложки и скорости наплавки (рис. 8, б), что сопровождается изменением площади поперечного сечения валика в 1,3...2,0 раза. Третий обусловлен изменением в 3...4 раза погонной энергии наплавки за счет ее скорости при постоянных ширине узкой подложки и эффективной тепловой мощности микроплазменной дуги (рис. 8, в), что сопровождается соответствующим изменением площади поперечного сечения валика в 3...4 раза. Данные законы изменения поперечного сечения валика, как правило, на практике одновременно сочетаются в той или иной степени.

Ранее для аргонодуговой сварки считалось [2, 3, 10], что технологическая прочность при сварке никелевых жаропрочных сплавов с высоким содержанием упрочняющей ү'-фазы определяется условием предельного ограничения сварочного тока и глубины проплавления основного металла. Опыт использования микроплазменной порошковой наплавки [4–8] свидетельствует, что технологическая прочность при однослойной наплавке кромок лопаток обеспечивается в довольно широком диапазоне параметров режимов (I = 2...35 A, v = 0,2...5,0 м/ч,  $F_{\rm p}$  < 30...35 мм<sup>2</sup>), где глубина проплавления основного металла, как правило, не превышает 1 мм.

Анализ соответствующих режимов наплавки на узкую подложку  $\delta \le 3$  мм, считающихся близкими к оптимальным, показал, что при изменении площади поперечного сечения наплавляемого валика в 2...4 раза доля основного металла в наплавленном изменяется незначительно и не превышает 15 %. Соответственно, доля тепла, расходуемого на плавление основного металла, не превышает 2,5 % от эффективной тепловой мощности микроплазменной дуги. Поэтому при переходе к многослойной наплавке кромки лопатки актуально формирование дополнительных критериев обеспечения технологической прочности.

Исходя из установленной в работах [11, 14] взаимосвязи склонности к образованию трещин для рассматриваемых сварных соединений и суммарных тепловложений в изделие, а также из изложенных в данной работе закономерностей управления поперечным сечением наплавляемого валика, таким дополнительными критерием технологической прочности может являться погонная энергия наплавки. Соответственно, с учетом ее величины для определенной ширины узкой подложки и необходимо выбирать площадь поперечного сечения наплавленного слоя при многослойной наплавке.

## Выводы

- 1. Уточнен технологический диапазон энергетических показателей однослойной микроплазменной порошковой наплавки на узкую подложку шириной менее 3 мм, где при соблюдении прочих технологических рекомендаций обеспечивается технологическая прочность сварного соединения «основной-наплавленный металл», в котором по крайней мере один из материалов является никелевым жаропрочным сплавом и содержит более 55 об. % ү'-фазы: эффективная тепловая мощность микроплазменной дуги — 30...420 Вт; погонная энергия наплавки — 100...1600 Дж/мм; производительность наплавки — 0,3...3,0 г/мин; площадь поперечного сечения наплавленного валика - $1...25 \text{ mm}^2$ .
- 2. В данном диапазоне в условиях ограниченной глубины проплавления основного металла технологическое управление формой и размерами поперечного сечения наплавляемого валика может осуществляться путем изменения эффективной тепловой мощности микроплазменной дуги, погонной энергии наплавки, рационального выбора химического состава наплавленного металла и способа подачи порошка (порционная, непрерывная). Наиболее эффективными из них при постоянной ширине узкой подложки являются: погонная энергия — изменение до 2,5...4 раз, эффективная тепловая мощность микроплазменной дуги — изменение на 30...50 %, а также их сочетание — изменение до 3,5...6 раз. Выявленные закономерности управления формой валика применяются на АО «Мотор Сич» в условиях серийного ремонта лопаток авиационных ГТД.

- 3. Дополнительными критериями обеспечения технологической прочности при восстановительной многослойной микроплазменной порошковой наплавке кромок лопаток из никелевых жаропрочных сплавов могут являться величина погонной энергии и связанные с ней высота и площадь поперечного сечения слоя наплавляемого металла.
  - 1. Гладкий П. В. Плазменная наплавка / П. В. Гладкий, Е. Ф. Переплетчиков, И. А. Рябцев. – К.: Екотехнологія, 2007. – 292 c.
- 2. Перемиловский И. А. Восстановление наплавкой турбинных лопаток авиационных двигателей / И. А. Перемиловский, В. С. Гейченко, И. И. Фрумин // Автоматическая сварка. – 1976. – № 5. – С. 54–56.
- 3. Петрик И. А. Дальнейшее развитие технологии упрочнения бандажных полок лопаток турбины из жаропрочных сплавов / И. А. Петрик, И. А. Перемиловский // Технологические системы. - 2001. - № 3. - С. 90-92.
- 4. Яровицин О. В. Мікроплазмове порошкове наплавлення жароміцних нікелевих сплавів з вмістом у'-фази 45...65 %: автореферат дис. на здобуття наук. ступеня канд. техн. наук: спец. 05.03.06 «Зварювання та споріднені процеси і технології» / О. В. Яровицин. – Київ, ІЕЗ ім. Є. О. Патона, 2009 р. – 21 с.
- 5. Технологический семинар Deloro Stellite в Запорожье // Автоматическая сварка. -2010. - № 1. - С. 59-62
- 6. Разработка технологии восстановления торцов бандажных полок рабочих лопаток ТВД авиационного двигателя Д18Т методом микроплазменной порошковой наплавки / К. А. Ющенко, В. С. Савченко, А. В. Яровицын [и др.] // Автоматическая сварка. -2010.- N = 8.- C. 25-29.
- 7. Ющенко К. А. Совершенствование технологии восстановления верхней бандажной полки рабочих лопаток авиационного ГТД / К. А. Ющенко, А. В. Яровицын // Цільова комплексна програма НАН України «Проблеми ресурсу і безпеки експлуатації конструкцій споруд та машин»: збірник наукових статей за результатами, отриманими в 2010–2012 рр. – IEЗ ім.  $\epsilon$ . О. Патона, Київ, 2012. – 612 c. – C. 506–509.
- Жеманюк П. Д. Опыт внедрения восстановительной микроплазменной порошковой наплавки при ремонте ло-

- паток турбин высокого давления в условиях серийного производства / П. Д. Жеманюк, И. А. Петрик, С. Л. Чигилейчик // Автоматическая сварка. -2015. -№ 8. - C. 43-
- 9. Технологическое обеспечение эксплуатационных характеристик деталей ГТД. Лопатки турбины. часть II / В. А. Богуслаев, В. М. Муравченко, П. Д. Жеманюк [и др.]. -Запорожье: ОАО «Мотор Сич», 2003. – 420 с.
- 10. Сорокин Л. И. Свариваемость литейных жаропрочных сплавов типа ЖС6 / Л. И. Сорокин, В. И. Лукин, Ю. С. Багдасаров // Сварочное производство. – 1997. – № 6. -
- 11. Яровицын А. В. Энергетический подход при анализе режимов микроплазменной порошковой наплавки / А. В. Яровицын // Автоматическая сварка. – 2015. – № 5-6. – C. 18-25
- 12. Попов С.А. Шлифовальные работы / С. А. Попов. М.: Высшая школа, 1987. – 383 с
- 13. Профильное глубинное шлифование деталей газотурбинных двигателей / Э. В. Кондратюк, В. А. Леонтьев, А. В. Шуша [и др.] // Промышленность в фокусе. – 2013. – № 5. – C. 22–24
- 14. Анализ процесса формообразования валика для условий наплавки на узкую положку / К. А. Ющенко, А. В. Яровицын, Г. Д. Хрущов [и др.] // Автоматическая сварка. — 2015. — N 9. — C. 22—29.
- 15. Microplasma powder deposition as a new solid freeform fabrication process / H. Wang, W. Jiang, M. Vallant M. [et al.] // Proc. Instn. Mech. Engrs. – 2003. – vol. 217. – Part B. J. [Engineering Manufacture]. – P. 1641–1650.
- 16. Jhavar Suyog. Development of micro-plasma transferred arc (μ-PTA) wire deposition process for additive layer manufacturing applications / Suyog Jhavar, N. K. Jain, C. P. Paul // Journal of Materials Processing Technology. – 2014. – vol. 214, № 5. – P. 1102–1110.
- 17. Influence of various process conditions on surface finishes induced by direct metal deposition laser technique on a Ti-6Al-4V alloy/ Gharbi M., Peyre P., Gorny C. [et al.] // Journal of Materials Processing Technology. – 2012. – vol. 213, № 5. – P. 791–800.
- Математический энциклопедический словарь / [гл. ред. Ю. В. Прохоров]. - М.: Современная энциклопедия, 1988. – 848 c.

Поступила в редакцию 06.07.2016

14-я МЕЖДУНАРОДНАЯ ВЫСТАВКА И КОНФЕРЕНЦИЯ ПО ГРАЖДАНСКОМУ СУДОСТРОЕНИЮ, СУДОХОДСТВУ, ДЕЯТЕЛЬНОСТИ ПОРТОВ И ОСВОЕНИЮ ОКЕАНА И ШЕЛЬФА H' H' AРОССИЯ ■ САНКТ-ПЕТЕРБУРГ ■ 19 – 22 СЕНТЯБРЯ 2017