ВПЛИВ ПАРАМЕТРІВ ПРОЦЕСУ МАГНЕТРОННОГО НАПИЛЕННЯ НА ФАЗОВИЙ СКЛАД І СТРУКТУРУ ПОКРИТТІВ З НІТРИДУ ВУГЛЕЦЮ

Ю.С. Борисов¹, О.В. Волос¹, Н.В. Вігілянська¹, В.Г. Задоя¹, В.В. Стрельчук²

¹ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. Е-mail: office@paton.kiev.ua ²ІФН ім. В.Є. Лашкарьова НАН України. 02000, м. Київ, просп. Науки, 45

Осадження CN_x -покриттів проводили за допомогою двох магнетронних пристроїв з титановою та графітовою мішенню в суміші газів Ar/N_2 . Досліджено вплив складу газової суміші (Ar/N_2), тиску (0,35, 1 та 2 Па) та температури (100...200 °C) на структуру покриття CN_x . Встановлено, що структура покриття являє собою аморфну розупорядковану графітоподібну структуру з sp^3 -, sp^2 - і sp^1 електронними зв'язками вуглецю. Найбільш упорядкована структура спостерігається у покриттів CN_x (найменша ID/IG = 1,16 і 1,2), отриманих при тиску 0,35 Па, температурі зразка 130 °C, вмісті азоту 40 і 58 %. Вивчено вплив підшара титану та перехідного шару ТіCN на адгезійні властивості покриття CN_x . При спільному використанні підшара титану та перехідного шару ТіCN збільшується адгезія покриття до основ з титану та сталі X18H10T при товщині покриття 2...3 мкм. Бібліогр. 15, табл. 2, рис. 6.

Ключові слова: магнетронне розпилення, покриття СЛ, структура, фазовий склад, раманівська спектроскопія

Вступ. За останнє десятиліття покриття нітриду вуглецю CN привертає значну увагу [1]. У 1989 р. Лю та Коен теоретично розрахували нову супертверду структуру, нітрид вуглецю C₃N₄ [2]. Тоді численні зусилля були спрямовані на синтез цього нового матеріалу. Аморфна плівка нітриду вуглецю була одним з результатів таких досліджень. Виявлено, що вона має більш високу твердість і зносостійкість [3] порівняно з плівкою з алмазоподібного вуглецю. Аморфні покриття вже знайшли широкомасштабне застосування як захисні покриття на жорстких дисках і головках читання запису [4] завдяки їхнім чудовим властивостям. Порівняно з гідрогенізованими алмазоподібними вуглецевими покриттями CN має більшу зносостійкість при низькому коефіцієнті тертя [5]. Ще однією перевагою включення азоту в покриття є збільшення поверхневої енергії, яка в свою чергу забезпечує високу змочуваність [6].

Плівки CN_x переважно складаються з вуглецю та азоту, а також можуть бути леговані воднем. Оскільки дані елементи широко поширені в живому організмі, то покриття мають властивості біосумісності [7].

Покриття CN_x можуть бути синтезовані методами: плазмохімічного осадження із газової суміші ацетилену з азотом; вакуумно-дугового напилення в середовищі азоту з потоків вуглецевої плазми, генерованих катодними плямами вакуумнодугових розрядів [8]. Цікаво також використання для цієї мети реактивного магнетронного розпилення графітової мішені в суміші газів Ar/N₂ [9]. За певних умов осадження магнетронне покриття CN₂ може мати велике значення нормованої твердості H/E (більше 0,12), що визначає його пружність і зносостійкість за умов тертя (в триботехнічному контакті) [10]. В роботі [11] запропоновано оцінювати пружні властивості покриття CN при індентуванні відсотком пружного відновлення $R(\%) = (h_{\text{max}} - h_{\text{res}})/$ $h_{\rm max}$ ·100, де $h_{\rm max}$ – глибина впровадження індентора в покриття при максимальному навантаженні; h_{res} – глибина після зняття навантаження. Завдяки пружним властивостям покриття CN отримало назву «супертверда гума». В роботі [12] представлено результати дослідження механічних і триботехнічних властивостей покриття CN, осадженого на основи з титану, які підтверджують його високий опір пластичній деформації. Так, при нанесенні покриття CN_{i} на титан пружне відновлення поверхні (R, %), збільшується з 30 до 81 %.

Зносостійкість і адгезійна міцність покриття CN_x залежать від впливу умов іонного бомбардування [13]. В роботі [14] розглядається технологія отримання покриття CN_x з високою адгезією до поверхні основ з нержавіючої сталі при використанні підшара хрому. Для осадження хрому застосовували метод потужного імпульсного магнетронного розпилення (HIPIMS). Відмінною особливістю HIPIMS є високий рівень іонізації розпиленого матеріалу та високий рівень дисоціації молекул газу.

Живлення магнетронне з хромовою мішенню здійснювали від джерела імпульсної напруги: U = 500...1000 В, f = 150 Гц, $t_{imn} = 100$ мс, джерело напруги зміщення мало такі параметри: $U_{3M} = 500...1000$ В, f = 150 Гц, $t_{imn} = 100$ мс. Покрит-

Борисов Ю.С. - https://orcid.org/0000-0002-6019-8464, Волос О.В. - https://orcid.org/0000-0002-9073-2840,

Вігілянська Н.В. – https://orcid.org/0000-0001-8576-2095, Задоя В.Г. – https://orcid.org/0000-0002-1286-985X, Стрельчук В.В. – https://orcid.org/0000-0002-6894-1742

[©] Ю.С. Борисов, О.В. Волос, Н.В. Вігілянська, В.Г. Задоя, В.В. Стрельчук, 2022

тя CN_x осаджували шляхом розпилення графітової мішені на постійному струмі при негативній напрузі зміщення $U_{_{3M}} = -25$ В. Визначення адгезійної міцності покриття CN_x методом дряпання показало, що порівняно з варіантом, коли підшар хрому осаджували при живленні магнетрона від джерела постійної напруги, критичне навантаження руйнування покриття CN_x зросло більш ніж утричі.

У роботі [13] зазначається, що іонне бомбардування аморфних плівок CN_x покращує їхні механічні властивості, забезпечуючи велику твердість, високий опір пластичній деформації та високе пружне відновлення.

Метою даної роботи було дослідження реактивного магнетронного розряду з графітовою мішенню в суміші газів Ar/N_2 , а також дослідження і розробка процесу отримання магнетронного покриття CN_x на основах з нержавіючої сталі та титану.

Методика експериментів та досліджень. Покриття осаджували за допомогою модернізованої вакуумної установки ВУ-1БС, оснащеної модулем магнетронного розпилення на постійному струмі, що складається з двох магнетронів: магнетрона 1 з дисковою мішенню (діаметр 88 мм, товщина 4 мм) з графіту чистотою 99,98 % МПГ-7 і магнетрона 2 з прямокутною мішенню (90×58×4 мм) з титану ВТ-1-0 (рис. 1). Магнетрони встановлено на одному фланці таким чином, щоб кут між поверхнями мішеней дорівнював 150°. В результаті забезпечувалася можливість одночасного або почергового осадження покриттів на нерухому основу з двох магнетронів при однаковій відстані між основою і мішенями, що дорівнює 110 мм. Магнетрон 2 призначався для осадження адгезійного підшара титану на металеві основи.

Дослідження характеристик реактивного магнетронного розряду з графітовою мішенню проводили при різних значеннях робочого тиску *p*, суміші газів Ar/N, і відсоткового вмісту в ній азоту.

Для початкових експериментів з дослідження процесу формування покриття CN_x використовували скляні основи (65×30×4 мм). Цей

Рис. 1. Модуль магнетронного розпилення: *1*, 2 – відповідно магнетрон 1 і магнетрон 2

вибір був обумовлений можливістю точного вимірювання товщини покриття за допомогою профілографа-профілометра.

Для дослідження процесу формування покриття CN_x на металевих матеріалах як основу використовували зразки зі сталі X18H10T і титану ВТ1-0 розміром 65×30×0,5 мм, а також зразки з титану ВТ1-0 діаметром 25 мм та товщиною 5 мм. Перед приміщенням у вакуумну камеру зразки очищували в ультразвуковій ванні, що поступово наповнюється ацетоном та етиловим спиртом. У вакуумі при тиску 5,0·10⁻⁴ Па зразок прогрівали при температурі 150 °С протягом 20 хв, потім без вимикання нагрівача проводили очищення поверхні зразка бомбардуванням іонами аргону (особливо чистого) в розряді постійного струму при тиску 1,3 Па, напрузі 1100 В протягом 20 хв.

Зазначені варіанти обробки зразків були однією зі складових процесу підвищення адгезії покриття CN_x з поверхнею основи. Проведені попередні експерименти показали, що для збільшення адгезійної міцності покриття CN_x на зазначених основах на їхню поверхню необхідно осаджувати адгезійний шар титану і проміжний шар Ті–С–N. Останній призначався для згладжування перехідної межі між матеріалами з різними фізичними характеристиками основного CN_x та адгезійного шару титану.

Визначено три етапи процесу формування шарів покриття CN_x на поверхні зразків зі сталей X18H10T і титану BT1-0, а також діапазони зміни параметрів осадження шарів:

осадження підшара титану ($\delta = 0,3$ мкм) в аргон при робочому тиску p = 0,35 Па, питомій потужності магнетронного розряду з титановою мішенню $\Delta_{p_{\text{Ti}}} = 3,5$ Вт/см, швидкості осадження $V_{\text{Ti}} = 25$ нм/хв та зміні негативного зміщення на основі $U_{_{3M}}$ від –300 до –1400 В;

осадження проміжного шару Ті–С–N ($\delta = 0,25$ мкм) за допомогою спільного реактивного магнетронного розпилення графітової та титанової мішеней на постійному струмі в суміші газів Ar/N₂ при тисках p = 0,35, 1 та 2 Па, середніх значеннях $\Delta_{pc} = 10,4$ Вт/см та $\Delta_{pTi} = 3,4$ Вт/см, $U_{_{3M}CN_{v}} = 0...-40$ В;

осадження основного шару CN_x ($\delta = 2, 0...3, 9$ мкм) у суміші газів Ar/N₂ при p = 0,35, 1 та 2 Па, $\Delta_{PC} = 10$ BT/см, $U_{_{3M}CN_x} = 0...-40$ B, $T_{_{OCH}} = 130, 200, 350$ °C.

Фазовий аналіз покриттів проводили методом рентгенівської дифракції за допомогою рентгенівського дифрактометра «Philips X'Pert-MPD» з Cu K_a рентгенівським джерелом (довжина хвилі $\lambda = 0,15418$ нм). Рентгенівські дифракційні спектри знімали в геометрії Брегга–Брентано (2Th-omegaсканування) – повний кутовий діапазон реєстрації дифракційного спектра по 20 = 25...75°.

Метод комбінаційної раманівської спектроскопії (КРС) використовували для визначення конфігурацій хімічних зв'язків вуглецю в покритті. Вимірювання спектрів мікроКРС проводили в геометрії на відображення при кімнатній температурі за допомогою потрійного раманівського спектрометра «Т-64000 Horiba Jobin-Yvon», оснащеного охолоджувальним детектором ССD. Для збудження використовували лінію Ar–Kr-лазера з довжиною хвилі 488 нм. Випромінювання фокусувалося на зразку за допомогою об'єктива 50х, потужність падаючого на зразок випромінювання становила близько 0,25 мВт.

Результати експериментів та їх обговорення. З метою визначення оптимальних умов осадження покриття CN_x досліджено характеристики магнетронного розряду постійного струму з графітовою мішенню з МПГ-7 в суміші газів Ar/N₂. Експерименти проводили при p = 0,35, 1 та 2 Па. Встановлено, що при зазначених тисках розряд стійкий і відсутні пробої розрядного проміжку при P = 11 Вт/см.

Найбільш повне уявлення про характер горіння магнетронного розряду з графітовою мішенню в суміші газів Ar/N₂ дають залежності напруги від відсоткового вмісту витрати азоту N₂ у суміші, що визначається відношенням витрати азоту до суми витрат аргону і азоту – $Q_{N_2}/(Q_{N_2}+Q_{Ar})100$ (рис. 2). При N₂ = 0 зі збільшенням тиску до 2 Па напруга розряду зменшується з 600 до 560 В. При p = 0,35 Па зі збільшенням N₂ до 24 % напруга розряду досягає максимуму U = 690 В, а далі знижується і при N₂ =100 % U = 640 В. Дещо інший характер зміни напруги розряду виявлено при тисках, рівних 1 та 2 Па. Так, при p = 1 Па і N₂ = 24 % напруга також досягає максимуму U = 675 В, але далі не змінюється до N₂ = 100 %.

Досліджено також вольт-амперні характеристики (ВАХ) магнетронного розряду постійного струму з мішенню з титану ВТ1-0 (магнетрон 2) у суміші газів Ar/N₂ при p = 0,35, 1, 2 Па. Напруга горіння розряду зростає зі збільшенням N₂ через утворення на поверхні мішені плівки TiN (рис. 3).

При одночасній роботі двох магнетронів відбувається часткове запилення поверхні титанової мі-*U*, в

Рис. 2. Залежність напруги магнетронного розряду з графітовою мішенню з МПГ-7 від вмісту азоту в суміші Ar/N_2 при I = 1 A, p = 0.35 (1), 1 (2), 2 (3) Па

шені плівкою вуглецю, що так само призводить до збільшення напруги горіння розряду і різкого зростання напруги запалювання. Для p = 0,35, 1 і 2 Па визначено відповідні граничні значення N₂, рівні 45, 73 і 66 %, при яких забезпечувалося стійке збудження та підтримання розряду з титановою мішенню.

На рис. 4 наведено залежності швидкості осадження покриття CN_x на скляні підкладки від вмісту азоту в суміші Ar/N_2 за таких умов: робочі тиски p = 0,35, 1 і 2 Па, струм розряду I = 1 А. При кожному із зазначених тисків покриття осаджувалося при шести значеннях вмісту витрат азоту N_2 в суміші Ar/N_2 . При цьому питома потужність магнетронного розряду *P* змінювалася в межах 9,3...11,4 Вт/см.

Як видно з рис. 4, зі збільшенням вмісту азоту в суміші газів при всіх тисках швидкість осадження зростає. При p = 0,35 та 2 Па ріст рівномірний. При p = 1 Па підвищене зростання швидкості осадження має місце зі збільшенням N₂ від 60 до 100 %. При N₂ = 0 в аргоновій атмосфері на основу осаджувалося вуглецеве покриття зі швидкістю V_C = 16 нм/хв (0,96 мкм/год). При N₂ = 100 % формувалося покриття CN_x з максимальним вмістом азоту із середньою швидкістю V_{CNx} = 60 нм/хв (3,6 мкм/год). Отже, при зміні N₂ від 0 до 100 % швидкість осадження покриття збільшилася в 3,8 раза, а питома потужність розряду, пропорційно якої зазвичай змінюється швидкість іонного розпилення матеріалів, збільшилася всього в 1,2 раза (з 9,3 до 11,4 Вт/см).

Значна відмінність у ступені питомої потужності й швидкості осадження свідчить про складніший механізм розпилення графіту в суміші газів Ar/N₂. В роботі [15] зазначається, що зростання

0 10 20 30 40 50 60 70 80 Q_{N_2} , % Рис. 4. Залежність швидкості осадження покриття CN_x від вмісту азоту в суміші Ar/N, при p = 0.35 (1), 1 (2), 2 (3) Па

	<i>р</i> , Па	T _{ocH} , °C	Умови розпилення покриття					
Номер зразка			Ti		Ti-C-N		CN _x	
			$P_{_{\mathrm{Ti}}}$, Вт	$U_{_{\rm 3M}}, { m B}$	N ₂ ,%	$P_{\rm C}/P_{\rm Ti}$, відн. од.	N ₂ ,%	$P_{\rm C}$, Bt
03CN _x	0,35	200	184	-150	25,6	2,7	58	570
04CN _x	0,35	130	184	-150	25,6	2,8	58	560
05CN _x	0,35	350	184	-300	25,6	2,8	58	560
06CN _x	0,35	130	184	-300	-	-	58	580
011CN _x	0,35	130	184	-300	25,6	2,8	42	540
012CN _x	0,35	350	180	-300	25,6	2,8	42	540
07CN _x	1,0	130	190	-300	22,8	2,85	100	580
08CN _x	1,0	350	187	-300	22,8	2,9	100	560
010CN _x	1,0	200	180	-300	22,8	3,0	100	560
09CN _x	2,0	130	180	-300	66,0	2,75	100	560

Рис. 5. Рентгенограми зразків $04CN_x$, $05CN_x$, $011CN_x$, отримані у геометрії Брегга–Брентано

швидкості осадження можливо пов'язане зі збільшенням коефіцієнта розпилення графітової мішені через зменшення когезійного зв'язку атомів вуглецю при хімічній реакції між атомами азоту й вуглецю. Крім того, на поверхні мішені можуть утворюватися летючі радикали CN, що легко розпилюються.

Результати рентгеноструктурного аналізу магнетронних покриттів CN_x представлено на рис. 5, 6. Параметри процесу осадження покриттів CN_x наведено у табл. 1.

Як видно з рис. 5, на спектрах рентгенівської дифракції від усіх зразків $04CN_x$, $05CN_x$, $011CN_x$ видно присутність фази титану (гексагональної), що відповідає наявності адгезійного шару титану ($\delta = 0,35$ мкм). У зразка $05CN_x$ присутня також фаза ТіN, яка найбільш імовірно утворилася через підвищену температуру осадження. Не спостерігаються рефлекси від шарів CN_x та Ті–С–N, що свідчить про їхній аморфний стан.

Рис. 6. Спектри КРС зразків із покриттям CN_x (на всіх спектрах КРС реєструються дві смуги D (≈ 1390 см⁻¹) і G (≈ 1580 см⁻¹), які характерні для непружного розсіювання світла у вуглецевих структурах)

Спектри КРС досліджених зразків представлено на рис. 6.

Для моделювання G- і D-смуг використовували функції Гаусса з попереднім відніманням змодельованої базової лінії (рис. 6). У табл. 2 наведено результати аналізу частотних положень, напівширин і співвідношень інтегральних інтенсивностей D- і G-смуг, який виконано шляхом розкладання спектрів КРС на відповідні компоненти. Щодо азотоміских вуглецевих плівок, крім коливань, обумовлених вуглецевими С = С зв'язками, внесок у коливальні лінії вносять також коливання C = N зв'язків із типом *sp*²-конфігурації хімічних зв'язків. У експериментальних КРС спектрах у загальному випадку розділити ці вклади дуже складно. Зміна положення та форма цих коливальних смуг відбувається в результаті структурних змін, формування розупорядкування, ароматичних кілець, мікрокристалічного графіту тощо [15].

Слабкий сигнал в області 600...900 см⁻¹ пов'язаний з індукованим розупорядкуванням *sp*² структур-

Номер зразка		D-смуга (sp	²)				
	ω, см-1	FWHM, cm ⁻¹	FWHM, відн. од.	ω, см-1	FWHM, cm ⁻¹	FWHM, відн. од.	ID/IG
04 CN _x	1400,6	349,4	822	1574,5	140,2	683	1,20
05 CN _x	1393,3	336,1	621	1578,8	135,2	470	1,32
011 CN _x	1396,9	345,3	565	1570,6	142,6	488	1,16

ної фази вуглецю процесами розсіювання за участю фононів з ненульовими хвильовими векторами.

Раманівська смуга зі спектральним положенням близько 2220 см⁻¹, що спостерігається в спектрах КРС покриття CN_x , пов'язана з формуванням в досліджених структурах потрійних $C \equiv N$ хімічних зв'язків з *sp*¹-гібридизацією.

Найменше значення відношення ID/IG = 1,16 свідчить про найбільшу впорядкованість вуглецю в структурі покриття CN_x (зразок 011 CN_x), отриманого при $T_{och} = 130$ °C та $N_2 = 42$ %.

Висновки

1. Розроблено процес осадження нанокомпозитного покриття нітриду вуглецю CN_x (товщина 2...3 мкм) на основи з X18H10T і титану BT1-0 із застосуванням адгезійного шару титану та проміжного шару Ті–С–N методом сумісного реактивного магнетронного розпилення на постійному струмі мішеней з титану та графіту в суміші газів Ar/N₂.

2. Дослідження покриття CN_x показало, що воно має аморфну розупорядкову графітоподібну структуру з sp^3 , sp^2 і sp^1 електронними зв'язками вуглецю. Найбільш упорядкована структура отримана у покриттів CN_x (ID/IG = 1,16 і 1,2) при p = 0,35 Па T_{och} = 130 °C, N_2 = 40 та 58 %.

Список літератури/References

- Hultman, L., Neidhardt, J., Hellgren, N. et al. (2003) Fullerene-like Carbon Nitride: A Resilient Coating Material. *MRS Bulletin*, 28(03), 194–202. doi:10.1557/mrs2003.62
- Liu, A.Y., Cohen, M.L. (1989) Prediction of New Low Compressibility Solids. Science, 245(4920), 841–842. doi:10.1126/ science.245.4920.841
- Liu, D., Ruan, C.F., Zhang, P. et al. (2021) Structural, interface texture and toughness of TiAlN/CN multilayer films. *Materials Characterization*, 178, 111301. doi:10.1016/j. matchar.2021.111301
- Vyas, A., Shen, Y., Zhou, Z., Li, K. (2008) Nano-structured CrN/CN, multilayer films deposited by magnetron sputter-

ing. Composites Science and Technology, 68(14), 2922–2929. doi:10.1016/j.compscitech.2007.11.002

- Nishimura, H., Umehara, N., Kousaka, H., Tokoroyama, T. (2016) Clarification of relationship between friction coefficient and transformed layer of CN_x coating by in-situ spectroscopic analysis. *Tribology International*, 93, 660–665. doi:10.1016/j.triboint.2014.12.015
- Chen, R., Tu, J.P., Liu, D.G. et al. (2012) Structural and mechanical properties of TaN/a-CN_x multilayer films. *Surface and Coatings Technology*, 206(8–9), 2242–2248. doi:10.1016/j.surfcoat.2011.09.072
- Wang, M., Toihara, T., Sakurai, M. et al. (2014) Surface morphology and tribological properties of DC sputtered nanoscale multilayered TiAlN/CN_x coatings. *Tribology International*, 73, 36–46. doi:10.1016/j.triboint.2014.01.008
- Contreras, E., Bolívar, F., Gómez, M.A. (2017) Influence of nitrogen variation on the microstructrual, mechanical and tribological properties of CN_x coatings deposited by dc unbalanced magnetron sputtering. *Surface and Coatings Technology*, 332, 414–421. doi:10.1016/j.surfcoat.2017.05.095
- Cui F.Z., Qing X.L., Li D.J., Zhao J. (2005) Biomedical investigations on CNx coating. *Surface & Coating Technology*, 200(1–4), 1009–1013. doi:10.1016/j.surfcoat.2005.02.157
- Kovács, G.J., Veres, M., Koós, M., Radnóczi, G. (2008) Raman spectroscopic study of magnetron sputtered carbon-nickel and carbon nitride-nickel composite films: The effect of nickel on the atomic structure of the C/CN matrix. *Thin Solid Films*, 516(21), 7910–7915. doi:10.1016/j. tsf.2008.04.081
- Mubumbila, N., Tessier, P.-Y., Angleraud, B., Turban, G. (2002) Effect of nitrogen incorporation in CN_x thin films deposited by RF magnetron sputtering. *Surface and Coatings Technology*, 151–152, 175–179. doi:10.1016/s0257– 8972(01)01569–9
- Broitman, E., Czigány, Z., Greczynski, G. et al. (2010) Industrial-scale deposition of highly adherent CN_x films on steel substrates. *Surface and Coatings Technology*, 204(21– 22), 3349–3357. doi:10.1016/j.surfcoat.2010.03.038
- Charitidis, C., Patsalas, P., Logothetidis, S. (2005) Effects of energetic species during the growth of nitrogenated amorphous carbon thin films on their nanomechanical properties. *Thin Solid Films*, 482(1–2), 177–182. doi:10.1016/j. tsf.2004.11.167
- Tétard, F., Djemia, P., Angleraud, B. et al. (2002) Surface and bulk characterizations of CN_x thin films made by r.f. magnetron sputtering. *Surface and Coating Technolody*, 151–152, 184–188. doi:10.1016/s0257–8972(01)01574–2
- Gradowski, M.V., Ferrari, A.C., Ohr, R. et al. (2003) Resonant Raman characterisation of ultra-thin nano-protective carbon layers for magnetic storage devices. *Ibid.*, 174–175, 246–252. doi:10.1016/s0257–8972(03)00602–9

INFLUENCE OF PARAMETERS OF MAGNETRON SPUTTERING PROCESS ON PHASE COMPOSITION AND STRUCTURE OF CARBON NITRIDE COATINGS

Yu.S. Borysov¹, O.V. Volos¹, N.V. Vigilyanska¹, V.G. Zadoya¹, V.V. Strelchuk²

¹E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

²V.E. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine. 45 Nauki Ave., 02000, Kyiv, Ukraine

Sputtering of CN_x -coatings was carried out using two magnetron devices with titanium and graphite targets in the mixture of Ar/N_2 gases. The influence of gas mixture (Ar/N_2) composition, pressure (0.35, 1 and 2 Pa) and temperature (100...200 °C) on the structure of CN_x coatings were investigated. It was found that the structure of the coating has an amorphous disordered graphite-like structure with sp^3 -, sp^2 - and sp^1 electron bonds of carbon. The most ordered structure is observed in CN_x coatings (the least ID/IG = 1.16 and 1.2), produced at a pressure of 0.35 Pa, the temperature of the specimen is 130 °C, the content of nitrogen is 40 and 58%. The influence of a titanium sublayer and a transition TiCN layer on adhesive properties of CN_x coatings was studied. When a titanium sublayer and a transition TiCN layer are used together, the adhesion of the coating to the bases of titanium and Kh18N10T steel grows at a thickness of coating being 2...3 µm. 15 Ref., 2 Tabl., 6 Fig.

Keywords: magnetron sputtering, CN_x coating, structure, phase composition, Raman spectroscopy

Надійшла до редакції 04.07.2022