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У роботі розглядається технологія мікроплазмового напилення зі сплаву Zr–Nb біосумісних покриттів та їх власти-
вості. На поверхні пористого Zr–Nb покриття з найбільш розвиненим мікрорельєфом поверхні виявлено присутність 
як відкритих макропор розміром до 300 мкм, так і мікропор розміром до 10 мкм. Рентгенофазовий аналіз сформованих 
Zr–Nb покриттів показав наявність фаз α-твердого розчину Zr, оксиду (ZrO2), нітриду (ZrN) і карбіду (ZrNbC2). Були 
встановлені показники корозійної стійкості мікроплазмового Zr–Nb покриття та сплаву Ті6Al4V в розчині 0,9 % NaCl, 
що імітує середовище людського організму. Передбачається, що покриття зі сплаву Zr–Nb, отримані мікроплазмовим 
напиленням на поверхнях існуючих ендопротезів зі сплаву Ті6Al4V, дозволять у майбутньому підвищити стійкість до 
корозії та остеоінтеграцію між кісткою та імплантатом. Бібліогр. 26, табл. 2, рис. 5.
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Вступ. У даний час найбільше застосування у 
виробництві ортопедичних імплантатів має сплав 
на основі титану системи легування Ті6Al4V [1]. 
Проте біоінертність поверхні імплантатів зі сплаву 
Ті6Al4V негативно впливає на утворення функці-
онального зв’язку між імплантатом і кісткою [2]. 
Крім того, довготривала експлуатація імплантатів 
зі сплаву Ті6Al4V при тісному контакті з кістко-
вими та м’якими оточуючими тканинами людини 
призводить до вивільнення легуючих елементів, та-
ких як ванадій та алюміній, і прояви патологічних 
реакцій в організмі. Так, алюміній перешкоджає 
мінералізації кісток, що призводить до структурно-
го дефіциту, а ванадій проявляє високу цитотоксич-
ність і може викликати алергічні реакції [3].

Оскільки після імплантування поверхня імп-
лантату першою взаємодіє з навколишньою живою 
тканиною, характеристики поверхні імплантату 
(такі як її топографія, гідрофільність, шорсткість 
та ін.) відіграють домінуючу роль як у взаємодії 
клітин з металевим імплантатом, так і в наступних 
процесах його остеоінтеграції [4].

Підвищити біосумісність існуючих імплантатів 
зі сплаву Ті6Al4V можливо завдяки модифікуван-
ню їх поверхні з наданням відповідної функціо-
нальності. Таким чином, нанесення на поверхню 

імплантату покриття є одним із важливих техноло-
гічних прийомів для надання поверхні хімічних і 
фізичних властивостей, які сприятимуть загально-
му підвищенню біосумісності всього імплантова-
ного виробу. Серед методів, які активно досліджу-
ються та знаходять розповсюдження при нанесенні 
біосумісних покриттів із порошків та дротів, є мік-
роплазмове напилення (МПН) [5, 6].

У якості матеріалів для підвищення біосуміс-
ності імплантатів все частіше знаходять своє за-
стосування сплави на основі цирконію завдяки 
таким унікальним властивостям, як: утворення 
внутрішнього кістковоподібного шару апатиту на 
їх поверхні в середовищі організму, меншу арте-
фактність при діагностиці за допомогою магніт-
но-резонансної томографії через низьку магнітну 
сприятливість, а також їх чудову загальну біосу-
місність, високі механічні властивості та корозій-
ну стійкість в біологічних рідинах живого організ-
му [7, 8].

Крім хімічного складу покриття, на процес ос-
теінтеграції значний вплив має розвинений рельєф 
його поверхні, наявність і розмір відкритих пор у 
покритті [9].

У [10] наведено, що розмір пор більше 100 мкм 
необхідний для успішного процесу формування 
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кісткової тканини, тоді як рекомендований розмір 
пор повинен бути близько 300 мкм. Подібний роз-
мір пор в діапазоні 200…400 мкм наведено в [11] 
як такий, що сприяє адгезії, міграції та проліфе-
рації остеобластів. Морфологія мікроструктури 
поверхні також сприяє умовам для адгезії на ній 
клітин. Встановлено, що мікромасштабна топо-
графія має низку переваг. Так, мікронний розмір 
відкритих пор може покращити шорсткість і пло-
щу поверхні, а також збільшити контакт імпланта-
ту з кісткою. Цей ефект взаємодії між імплантатом 
та кісткою, як показують результати досліджень, 
здебільшого сприяє остеоінтеграції. Крім того, мі-
крорівнева топографія може блокувати та стабілі-
зувати фібриновий потік, який може залучати ос-
теопрогеніторні клітини для колонізації на межі 
між імплантатом і кісткою. Найголовніше, мікро-
масштабна топографія поверхні здатна покращити 
початкову адгезію та диференціацію клітин [12].

Так, B.E. Li підтверджує, що мікро- і наношор-
сткість контактуючої поверхні з кісткою працю-
ють синергетично для підвищення ефективності 
остеоінтеграції ортопедичних імплантатів [13]. 
Результати гістологічних досліджень показують, 
що шорсткіший рельєф поверхні сприяє процесам 
остеоінтеграції [14].

K. Matsuzaka провів оцінку впливу поверхні 
імплантату на проліферацію остеобластоподібних 
клітин і показав, що клітини закріплюються на по-
верхнях у залежності від їх рельєфу, а переважна 
їх кількість спостерігалась на виступах понад 5 
мкм [15].

Також у [16] вказано, що при збільшенні шор-
сткості поверхні покриття від Ra = 3,7 мкм до 56,1 
мкм з’єднання титанового імплантату з кістковою 
тканиною підвищується в 4 рази (від 5,38 ± 1,96 до 
21,63 ± 2,51 МПа відповідно).

У даний час рекомендована середня шорсткість 
поверхні для титанових ортопедичних імплантатів 
знаходиться в широкому діапазоні (0,07…100 мкм) 
[17], проте систематичне дослідження впливу 
шорсткості поверхні на біосумісність не проводи-
лося. Автори [17] вказали оптимальний діапазон 
шорсткості поверхні ортопедичних імплантатів 
20…25 мкм. Хоча зростання показника шорсткості 
й підвищувало адгезію та поліферацію клітин на 
поверхні зразків зі сплаву Ti13Nb13Zr в їх досліді, 
але вона також і збільшувала місця із концентра-
цією напружень, погіршуючи міцність на згин та 
сприяла утворенню тріщин. У [18] відзначається, 
що висока шорсткість Ra = 118,19 ± 9,06 мкм по-
верхні ортопедичних титанових імплантатів може 
перешкоджати проліферації клітин. Передбачаєть-

ся, що зниження швидкості проліферації клітин на 
зразках-основах із підвищеною шорсткістю може 
бути результатом несприятливої біологічної реак-
ції на підвищену взаємодію з титаном. Таким чи-
ном, погана остеоінтеграція титанових імплан-
татів може бути обумовлена впливом титана на 
навколишні тканини.

У літературних джерелах представлені різ-
ні підходи щодо вибору оптимального діапазону 
шорсткості поверхні ортопедичних імплантатів. 
Відповідно із застосуванням рекомендованих зна-
чень шорсткості в майбутньому необхідно буде 
дослідити отримані поверхні на біосумісність.

Метою даної роботи є дослідження елементно-
го складу поверхні покриття, нанесеного методом 
мікроплазмового напилення дроту сплаву Zr–Nb на 
основу зі сплаву Tі6Al4V, її топографії, показника 
корозійної стійкості в середовищі, подібному до люд-
ського організму, та міцності зчеплення з основою.

Матеріали, обладнання та методики прове-
дення експерименту. Формування покриттів спла-
ву Zr–Nb із дроту діаметром 0,3 мм проводили на 
комплексі обладнання для мікроплазмового напи-
лення МПН-004 [19] на зразки зі сплаву Tі6Al4V.

Попередньо в результаті проведеного аналізу 
розрахованої швидкості подачі дроту зі сплаву Zr–
Nb, необхідної кількості теплоти мікроплазмово-
го струменя, практичного досвіду в отриманні бі-
осумісних покриттів на установці МПН-004 були 
визначені граничні значення параметрів режиму 
МПН (табл. 1) для подальшого дослідження їх-
нього впливу на процес формування біосумісних 
покриттів зі сплаву Zr–Nb.

При визначенні граничних значень техноло-
гічних параметрів МПН було враховано, що при 
струмі нижче 16 А і витраті плазмоутворюючого 
газу менше 160 л/год теплових і газодинамічних 
характеристик струменя буде недостатньо для за-
безпечення процесу плавлення Zr–Nb дроту діа-
метром 0,3 мм зі стабільним його диспергування 
[19]. Тому критерії граничних значень параметрів 
режиму підбиралися також з урахуванням можли-
вості забезпечення процесу як розпилення, так і 
формування покриття.

Рентгенофазові дослідження та хімічний ана-
ліз проводили на дифрактометрі D8 ADVANCE 

Таблиця 1. Граничні значення досліджуваних параметрів 
процесу МПН Zr–Nb покриттів

Параметри max (+) min (–)
Струм I, A 26 16

Витрата плазмоутворюючого газу Qпл, л/год 240 160
Дистанція напилення H, мм 120 40

Швидкість подачі дроту Vдр, м/хв 4,8 2,9
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Bruker (Bruker, США). Покриття сканувалися при 
параметрах напруги 30 кВ і при збільшенні ×200.

Морфологію поверхні сформованих покриттів 
вивчали за допомогою аналізу отриманих зобра-
жень на Philips SEM515 при використанні датчи-
ків BE+SE, напруги прискорення 20 кВ і струму 
нагріву електрода 40 мA.

Фотографії 3D профілів поверхонь покрит-
тів були отримані за допомогою оптичного про-
філометра Huvitz HDS-2520 (Gyeonggi, Респу-
бліка Корея) з роздільною здатністю  ± 0,1 мкм 
при оптичному збільшенні ×5, ×20 і ×50. Площа 
сканування для кожного вимірювання обирала-
ся випадковим чином, щоб забезпечити відтво-
рюваність вимірювань, і становила приблизно 
700×500 мкм2. Параметри шорсткості по площі 
були обрані через те, що вони дають інформа-
тивніші значення, ніж параметри лінії.

Вивчення 3D топографії поверхні та параме-
тру шорсткості поверхні покриттів по площі 2D 
карт було проведено за допомогою програмно-
го забезпечення Mountains® 9 (Digital Surf, Бе-
зансон, Франція). Середнє арифметичне відхилен-
ня профілю шорсткості поверхні (Sa) покриттів 
було визначено в межах стандартного відхилен-
ня ± 0,1 мкм відповідно до ISO 25178-2:2021.

Корозійну стійкість покриттів на зразках розмі-
ром 20×15×2 мм було досліджено впродовж 1 год у 
концентрованому розчині 0,9 % NaCl із близькою 
концентрацією іонів до плазми крові людини. У 
конфігурації електричної схеми досліджувані зраз-
ки виступали як робочі електроди, тоді як елек-
тродом порівняння був платиновий електрод. Зна-
чення екстраполяції Тафеля були застосовані для 
визначення густини струму корозії (Iкорр) і потенці-
алу корозії (Екорр). Поляризаційні криві отримували 
в розчині 0,9 % NaCl при 20 ºС в діапазоні напруги 
–250...+250 мВ і швидкості сканування 1 мВ/с.

Міцність зчеплення покриття з основою визна-
чали, застосовуючи метод статичного одновісно-
го розтягу згідно з ASTM C633-13:2021. Кількість 
досліджуваних зразків з покриттям була не менше 
5 шт. Випробування на розтяг кожного комплекту 
склеєних збірок зразків проводили на універсаль-
ній механічній машині 2054 Р-5 (НПК ТехМаш) 
при однаковій швидкості навантаження 2 мм/хв.

Результати досліджень та їх обговорення. 
Дослідження хімічного складу поверхні Zr–Nb по-
криттів (табл. 2) показало, що вони подібні вихід-
ному матеріалу, до складу якого входить Zr, серед-
нє значення якого складає біля 97,6 ± 0,82 ат. % і 
Nb 2 ± 0,3 ат. %, що відповідає промисловому цир-
конієвому сплаву марки КТЦ-125. Також фіксува-
лася незначна кількість Al і Ca, вміст яких стано-
вив менше 1 ат. %, що можна вважати домішками 
в складі сплаву Zr–Nb.

Рентгенофазові дослідження Zr–Nb дроту та 
поверхонь зразків із покриттям представлені у ви-
гляді рентгенограм (рис. 1).

При порівнянні рентгенограм виявлено, що 
повне розплавлення в мікроплазмовому струмені 
Zr–Nb дроту та наступне охолодження дисперго-
ваних частинок на поверхні основи призводить до 
формування покриттів, що складаються із α-твер-

Таблиця 2. Хімічний склад поверхні Zr–Nb покриття, отриманого при параметрах МПН I = 16 A; Qпл = 160 л/год; 
H = 40 мм; Vдр = 2,9 м/хв

Область сканування Вміст хімічних елементів, ат. %
Al Ca Zr Nb

1 0,4 0,3 97,2 ± 0,9 2,1 ± 0,3

2 0,2 – 98,1 ± 0,8 1,7 ± 0,3

3 0,2 – 97,5 ± 0,8 2,3 ± 0,3 

4 0,3 0,4 ± 0,1 97,5 ± 0,8 1,8 ± 0,3 

5 0,2 – 97,7 ± 0,8 2,1 ± 0,3 

Рис. 1. Рентгенограма Zr-Nb покриттів при параметрах МПН: 
режим 1 – I = 26 A, Qпл = 240 л/год, H = 120 мм, Vдр = 4,8 м/хв; 
режим 2 – I = 26 A, Qпл = 160 л/год, H = 40 мм, Vдр = 4,8 м/хв; 
режим 3 – I = 16 A, Qпл = 160 л/год, H = 40 мм, Vдр = 2,9 м/хв
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дого розчину Zr із присутністю включень: оксиду 
ZrO2, нітриду ZrN і карбіду ZrNbC2.

Інтенсивність піків на рентгенограмі та подіб-
ність виявлених фаз від варіювання параметрів ре-
жиму МПН не змінюється і спостерігається на всіх 
зразках із покриттям. За вмістом включень у по-
критті переважає фаза ZrO2, яка в подальшому буде 
виступати як інгібітор швидкості розчинення по-
криття при контакті з оточуючими рідинами люд-
ського організму. Виявлена фаза ZrN свідчить про 
насиченість азотом розпилених частинок при русі в 
мікроплазмовому струмені за температур 670 К. Це 
вказує на те, що захисту у вигляді обдуву струменем 
технологічного газу аргону мікроплазмового пото-
ку із розпиленими частинками Zr недостатньо для 
ефективного відокремлення їх від атмосферних га-
зів при формуванні покриттів. Присутні включення 
ZrNbC2 у біосумісних покриттях можуть посприяти 
підвищенню твердості даних покриттів, але в той 
же час знизити їх пластичність і міцність зчеплення 
з основою, як і включення оксидів і нітридів.

Відомо, що як на розмір і вміст пор в об’ємі 
структури Zr–Nb покриттів, так і на мікрорельєф 
їх поверхневих шарів впливають стан і деформації 
диспергованих частинок, які формують покриття, 
що в свою чергу визначається параметрами режи-
му МПН [20]. Вміст об’ємної пористості в струк-
турі Zr–Nb покриттів знаходився в межах значень 
(2,8 ± 0,1)…(20,3 ± 2,0) %, тоді як найбільший 
вміст об’ємної пористості в Zr–Nb покритті фор-
мувався на режимі із параметрами I = 16 А; Qпл = 
= 160 л/год; Н = 40 мм; Vдр = 2,9 м/хв [20].

Дослідження морфології поверхонь Zr–Nb по-
криттів (рис. 2.) продемонструвало, що вона ха-
рактеризується неоднорідністю з безліччю поверх-
невих розгалужень у вигляді впадин і виступів та 
відкритих макропор розміром до 300 ± 50 мкм. 
Завдяки диспергованим частинкам, котрі були пов-
ністю розплавлені, формувалися Zr–Nb покриття 
із дископодібних сплетів. Через наявність залиш-

кового напруження в сплетах поверхня Zr–Nb по-
криттів мала мікротріщини, які утворювалися че-
рез швидкі процеси теплообміну та охолодження. 
Утворені тріщини призводять до релаксації напру-
жень, що виникають у покритті, у той час як сама 
пористість може бути способом для зниження мо-
дуля пружності покриття та наближення його до 
кісткового, але вона також є небезпечним факто-
ром, який посилює процес деструкції на межі роз-
ділу покриття та основи [21].

Поверхні Zr–Nb покриттів з найбільш вираженим 
мікрорельєфом мали шорсткість Sa = 17 ± 0,1 мкм 
(рис. 3).

Подібний показник шорсткості поверхні, який 
сприяє процесам остеоінтеграції, було отримано в 
[22] для біосумісного титанового покриття.

Дослідження морфології поверхонь Zr–Nb по-
криттів виявили не тільки відкриті макропори роз-
міром до 300 мкм, а й також мікропори розміром 
до 10 мкм, які знаходилися на вершинах виступів 
покриття, що утворені із частково деформованих 
диспергованих частинок з Zr–Nb дроту (рис. 4).

Отримані результати виявленої шорсткості та по-
ристості, згідно з літературними даними, дозволять 
забезпечити підвищення біосумісності поверхні по-

Рис. 2. СЕМ морфологія поверхні Zr–Nb покриття, отримана 
при параметрах МПН I = 16 A; Qпл = 160 л/год; H = 40 мм; 
Vдр = 2,9 м/хв

Рис. 3. 2D (а) і 3D (б) топографія мікрорельєфу поверхні Zr-Nb покриття, отриманого при параметрах МПН I = 16 A; Qпл = 160 
л/год; H = 40 мм; Vдр = 2,9 м/хв
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криття та міцніше з’єднання кістка-імплантат завдя-
ки наявності місць для закріплення кісткового ма-
триксу та прискорення процесу остеоінтеграції [23].

Проведені дослідження міцності зчеплення по-
криттів зі сплаву Zr–Nb, нанесених на поверхню 
зразків зі сплаву Ті6Al4V, показали, що її середнє 
значення для покриттів завтовшки 300 ± 10 мкм із 
вмістом об’ємних пор 20,3 ± 2,0 % склало 26 ± 2,1 
МПа. Оскільки на сьогодні немає стандарту, який 
визначає необхідну величину міцності зчеплення 
біосумісних Zr–Nb покриттів із пористою струк-
турою з поверхнею імплантатів, то їх порівняння 
було виконано згідно із встановленою вимогою в 
міжнародному стандарту якості ISO 13179-1:2021 
для пористих титанових покриттів, отриманих 
плазмовим напиленням на поверхні зі сплаву 
Ті6Al4V. Відповідно до вимоги ISO 13179-1:2021 
середнє значення міцності зчеплення біосумісного 
покриття на відрив має становити понад 22 МПа. 
Тому встановлене зчеплення 26 ± 2,1 МПа, що ха-
рактеризує міцність зчеплення Zr-Nb покриття з 
основою зі сплаву Ті6Al4V, задовольняє вимогам 
ISO 13179-1:2021.

Результати досліджень корозійної стійкості 
Zr–Nb покриття, отриманого методом МПН та зі 
сплаву Ti6Al4V основи після газоабразивної об-
робки, представлені у вигляді поляризаційних ді-
аграм (рис. 5).

Із аналізу поляризаційних кривих було виявле-
но, що плато потенціалу корозії Zr–Nb покриття 
було біля 216 мВ і знаходилося в більш позитивній 
області значень, ніж для основи зі сплаву Ti6Al4V, 
яке становило 310 мВ. Таким чином, корозійна стій-
кість зразка з Zr–Nb покриттям була вища порівня-
но зі сплавом Ti6Al4V, що пояснюється наявністю 
захисного поверхневого оксидного шару ZrO2, який 
знижує швидкість корозії шляхом мінімізації ви-
вільнення іонів у біосередовище та сприяє процесу 
остеоінтеграції. На основі цих характеристик цир-
коній та його сплави були запропоновані як канди-
дати для постійних імплантатів [24].

Також підвищеному механізму корозійної стій-
кості сприяє плівка оксиду ніобію (Nb2O5), яка 
формується по границях кристалів двооксиду ци-
рконію та сприяє «заліковуванню» дефектів захис-
ної оксидної плівки цирконію [25].

Для всіх досліджуваних зразків Zr–Nb покрит-
тя і зразків основи зі сплаву Ti6Al4V анодний на-
хил кривої був подібним до катодного нахилу 
кривої на поляризаційній діаграмі, що свідчить 
про те, що кінетика перенесу електронів як для 
анодної, так і для катодної складової є однако-
вою для обох випадків. Менший показник густи-
ни струму корозії на зразках з Zr–Nb покриттям 
(рис. 5, а) вказує на значно нижчу швидкість про-
тікання процесу корозії, що підтверджує кращу 
ефективність захисту поверхневого шару оксид-
ною плівкою ZrO2. Аналогічні результати наведе-
ні в [26] на прикладі захисту поверхонь магнієвих 
сплавів від корозії в середовищі людського орга-
нізму, де оксидна плівка ZrO2 визнана ефективні-
шою, ніж TiO2 .

Рис. 4. Морфологія поверхні із макро- (1), мікро- (2) порами 
Zr-Nb покриття, сформованого при параметрах МПН I = 16 
A; Qпл = 160 л/год; H = 40 мм; Vдр = 2,9 м/хв

Рис. 5. Поляризаційні діаграми залежності анодної густини струму корозії зразків з Zr–Nb покриттям (а) та зразків основи зі 
сплаву Ti6Al4V (б)



15ISSN 0005-111X   АВТОМАТИЧНЕ ЗВАРЮВАННЯ, №6, 2024

НАУКОВО-ТЕХНІЧНИЙ РОЗДІЛ

З отриманих результатів корозійної поведінки 
досліджуваних зразків та їх аналізу було встанов-
лено, що біосумісні Zr–Nb покриття, отримані ме-
тодом МПН, дозволять значно ефективніше проти-
стояти корозії в біологічних розчинах і підвищити 
корозійну стійкість сплаву Ti6Al4V, який в тепе-
рішній час найбільш поширено використовується 
при виготовлені імплантатів.

Висновки

1. Визначено, що, застосовуючи метод мікро-
плазмового напилення на режимі з параметрами 
I = 16 А, Qпл = 160 л/год, Н = 40 мм, Vдр = 2,9 м/хв, 
забезпечується формування Zr–Nb покриття з най-
більш розвиненим мікрорельєфом із шорсткістю 
Sa = 17 ± 0,1 мкм. Крім того, на поверхні пористо-
го Zr–Nb покриття виявлено присутність як макро-
пор розміром до 300 мкм, так і мікропор розміром 
до 10 мкм.

2. Рентенофазові дослідження Zr–Nb покрит-
тів показали, що вони складаються із α-твердого 
розчину Zr із присутністю включень: оксиду (ZrO2 
– переважаюча кількість), нітриду (ZrN), карбіду 
(ZrNbC2).

3. Отримані показники корозійної стійкості 
зразків покриття із Zr–Nb сплаву в розчині 0,9 % 
NaCl показали, що плато потенціалу корозії по-
криття знаходилося в позитивнішій області зна-
чень, ніж для зразків із Ti6Al4V сплаву, що пе-
редбачає утворення пасивуючого шару, який є 
захисним бар’єром від корозії. Менший показник 
густини струму корозії на зразках Zr–Nb покриття 
свідчить про їх вищу електрохімічну стійкість до 
корозії і вказує на значно нижчу швидкість про-
тікання процесу корозії, що підтверджує кращу 
ефективність захисту поверхневого шару оксид-
ною плівкою ZrO2.

4. У результаті поведених досліджень міцнос-
ті зчеплення Zr–Nb покриттів завтовшки 300 ± 10 
мкм із пористою структурою (вміст пор становив 
20,3 ± 2,0 % в об’ємі покриття) з поверхнею зраз-
ків із Ti6Al4V сплаву отримано середнє значення 
міцності зчеплення 26 ± 2,1 МПа, що задоволь-
няє вимогам ISO 13179-1:2021 (понад 22 МПа) та 
дозволяє використовувати їх відповідно до вимог 
біосумісних титанових покриттів на поверхнях 
імплантатів.

Опубліковані результати отримані в рам-
ках реалізації проєкту № 183/0070 від 01.08.2024 
«Розробка інноваційних біосумісних антибакте-
ріальних покриттів та технології їх нанесення 
на ортопедичні імплантати для застосуван-
ня при лікуванні травм у військовослужбовців 
та цивільних громадян» за грантової підтрим-

ки Національного фонду досліджень України в 
рамках конкурсу «Наука для зміцнення обороноз-
датності України».
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COATING FOR MEDICAL APPLICATION PRODUCED BY MICROPLASMA 
SPRAYING FROM Zr-Nb ALLOY
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The work deals with the technology of microplasma spraying of biocompatible coatings from Zr-Nb alloy and their properties. 
On the surface of the porous Zr-Nb coating with the most developed surface microrelief, the presence of both open macropores 
of up to 300 µm in size and micropores of up to 10 µm in size was revealed. The X-ray phase analysis of the formed Zr-Nb 
coatings showed the presence of phases of α-solid solution of Zr, oxide (ZrO2), nitride (ZrN) and carbide (ZrNbC2). The 
corrosion resistance of the microplasma Zr-Nb coating and Ti6Al4V alloy in a solution of 0.9 % NaCl, which simulates 
the environment of the human body, was determined. It is assumed that the Zr-Nb alloy coatings produced by microplasma 
spraying on the surfaces of existing Ti6Al4V endoprostheses will allow for future improvement of corrosion resistance and 
osseointegration between the bone and the implant. 26 Ref., 2 Tabl., 5 Fig.
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