Print

2019 №11 (04) DOI of Article
10.15407/as2019.11.05
2019 №11 (06)


Avtomatichne Zvaryuvannya (Automatic Welding), #11, 2019, pp.29-39

Processes of nonconsumable electrode welding with welding current modulation (Review) Part 1. Peculiarities of burning of non-stationary arcs with refractory cathode

U. Boi1, I.V. Krivtsun2


1Guangdong Institute of Welding (China-Ukraine E.O. Paton Institute of Welding). 363 Chiansin Str., Tianhe, 510650, Guangzhou. E-mail: wuby@gwi.gd.cn
2E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Works devoted to the processes of inert-gas nonconsumable electrode welding with current modulation were reviewed. In the first part of the review attention is focused on studies, dealing with the features of running of thermal, gas-dynamic and electromagnetic processes in non-stationary arcs with refractory cathode at different modes of arc current modulation. 35 Ref., 2 Tabl., 18 Fig.
Keywords: arc with refractory cathode, arc plasma, TIG welding, welding current modulation, pulse, frequency, duty cycle, amplitude

Received: 28.10.2019
Published: 20.11.2019

References

1. Lienert T.J., Babu S.S., Siewert T.A., Acoff V.A. (eds.) (2011) ASM Handbook. Vol. 6A. Welding fundamentals and processes. Ohio, USA, ASM International.
2. Roden W.A. (1972) High-frequency, pulsed-current GTA welding. National Aerospace Engineering and Manufacturing Meeting Proc., 2–5 Oct. 1972. San Diego, California, USA. Paper 720874, pp. 1–8.
3. Leitner R.E., McElhinney G.H., Pruitt E.L. (1973) An investigation of pulsed GTA welding variables. Welding J., Res. Suppl., 9, 405–410.
4. Yamaoto T., Shimada W., Gotoh T. (1976) Characteristics of high frequency pulsed DC TIG welding process. IIW 212-628-76, 16–22.
5. Sokolov, O.I., Gladkov, E.A. (1977) Dynamic characteristics of free-burning and constricted welding arc of direct current with nonconsumable electrode. Svarochn. Proizvodstvo, 4, 3-5 [in Russian].
6. Omar A.A., Lundin C.D. (1979) Pulsed plasma – pulsed GTA arcs: A study of the process variables. Welding J., Res. Suppl., 4, 97–105.
7. Cook G.E., Eassa H.E.-D.E.H. (1985) The effect of high-frequency pulsing of a welding arc. IEEE Transactions on Industrial Application, 1A-21, 5, 1294–1299.
8. Kolasa A., Matsunawa A., Arata Y. (1986) Dynamic characteristics of variable frequency pulsed TIG arc. Transaction of JWRI, 15, 2, 173–177.
9. Saedi H.R., Unkel W. (1988) Arc and weld pool behavior for pulsed current GTAW. Welding J., Res. Suppl., 11, 247–255.
10. Zhao J., Sun D., Hu S. (1992) Arc behavior of high frequency pulse TIG welding arc. Trans. China Weld Inst., 13(1), 59–66.
11. Kim W.H., Na S.J. (1998) Heat and fluid flow in pulsed current GTA weld pool. Int. J. of Heat and Mass Transfer, 41, 21, 3213–3227.
12. Wu C.S., Zheng W., Wu L. (1999) Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools. Modelling and Simul. Mater. Sci. Eng., 7, 1, 15–23.
13. Dzelnitzki D. (2000) Muendersbach TIG – direct-current welding with high-frequency pulses, an interesting process variant. EWM Hightec Welding GmbH. WM008801. DOC; 08.00.
14. Onuki J., Anazawa Y., Nihei M. et al. (2002) Development of a new high-frequency, high-peak current power source for high constricted arc formation. Japan. J. Appl. Phys., 41, 5821–5826.
15. Song Y., Yan S., Xiao T. et al. (2010) A Study on the macro-micro physical properties in pulsed arc plasma. Transactions of JWRI, 39, 2, 17–18.
16. Wu C.S. (2008) Welding heat process and pool geometry. Beijing, China Machine Press, сс. 102–104.
17. Cong B., Qi B., Zhou X. (2009) TIG arc behavior of ultrafast-convert high-frequency variable polarity square wave. Trans. China Welding Institution, 30, 6, 87–90.
18. Traidia A., Roger F., Guyot E. (2010) Optimal parameters for pulsed gas tungsten arc welding in partially and fully penetrated weld pools. Int. J. of Thermal Sciences, 49, 1197–1208.
19. Traidia A., Roger F. (2011) Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding. Int. J. of Heat and Mass Transfer., 54, 2163–2179.
20. Karunakaran N., Balasubramanian V. (2011) Effect of pulsed current on temperature distribution weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints. Trans. Nonferrous Met. Soc. China, 21, 278–286.
21. Yang M., Qi B., Cong B. et al. (2012) The influence of pulse current parameters on arc behavior by austenite stainless steel. Trans. China Welding Institution, 33, 10, 67–71.
22. Qi B., Yang M., Cong B. et al. (2012) Study on fast-convert ultrasonic frequency pulse TIG welding arc characteristic. Mater Sci. Forum., 704-705, 745–751.
23. Qi B., Yang M., Cong B. et al. (2013) The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel. Int. J. Adv. Manuf. Technol., 66, 1545–1553.
24. Yang M., Qi B., Cong B.et al. (2013) Study on electromagnetic force in arc plasma with UHFP-GTAW of Ti–6Al–4V. IEEE Transactions on Plasma Science, 41, 9, 2561–2568.
25. Yang Z., Qi B., Cong B. et al. (2013) Effect of pulse frequency on weld appearance behavior by TC4 titanium alloys. Trans. China Welding Institute, 34, 12, 37–40.
26. Krivtsun, I.V., Krikent, E.V., Demchenko, V.F. (2013) Modelling of dynamic characteristics of a pulsed arc with refractory cathode. The Paton Welding J., 7, 13-23.
27. Yang M., Yang Z., Cong B. et al. (2014) A study on the surface depression of the molten pool with pulsed welding. Welding J., Res. Suppl., 93, 8, 312–319.
28. Yang M., Yang Z., Qi B. (2015) The effect of pulsed frequency on the plasma jet force with ultra high frequency pulsed arc welding. International Institute of Welding, 8, 875–882.
29. Sydorets, V.N., Krivtsun, I.V., Demchenko, V.F. et al. (2016) Calculation and experimental research of static and dynamic volt-ampere characteristics of argon arc with refractory cathode. The Paton Welding J., 2, 2-8.
30. Cunha T.V.d., Louise-Voigt A., Bohorquez C.E.N. (2016) Analysis of mean and RMS current welding in the pulsed TIG welding process. Journal of Materials Processing Technology, 231, 449–455.
31. Silva D.C.C., Scotti A. (2016) Using either Mean or RMS values to represent current in modeling of arc welding bead geometries. Ibid, 240, 382–387.
32. Demchenko, V.F., Boi, U., Krivtsun, I.V., Shuba, I.V. (2017) Effective values of electrodynamic characteristics of the process of nonconsumable electrode welding with pulse modulation of arc current. The Paton Welding J., 8, 2-11.
33. Nestor O.H. (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J. Appl. Phys, 33, 5, 1638–1648.
34. Demchenko, V.F., Boi, U., Krivtsun, I.V. et al. (2016) Procedure of density distribution restoration of electric current in arc anode spot with refractory cathode according to experimental data obtained by the method of split anode. In: Proc. of 8th Int. Conf. on Mathematical Modeling and Information Technologies in Welding and Related Processes (19-23 September 2016, Odessa Ukraine), 21-28.
35. Grim, G. (1978) Spectral line broadening in plasma. Moscow, Mir [in Russian]. 1. Lienert, T.J., Babu, S.S., Siewert, T.A., Acoff, V.A. (2011) ASM Handbook. Vol. 6A. Welding fundamentals and processes. Ohio, USA, ASM International. https://doi.org/10.31399/asm.hb.v06a.9781627081740
2. Roden, W.A. (1972) High-frequency, pulsed-current GTA welding. In: Proc. of National Aerospace Engineering and Manufacturing Meeting (2-5 Oct. 1972, San Diego, California, USA). Paper 720874, 1-8.
3. Leitner, R.E., McElhinney, G.H., Pruitt, E.L. (1973) An investigation of pulsed GTA welding variables. Welding J., Res. Suppl., 9, 405-410.
4. Yamaoto, T., Shimada, W., Gotoh, T. (1976) Characteristics of high frequency pulsed DC TIG welding process. Doc. IIW 212-628-76, 16-22.
5. Sokolov, O.I., Gladkov, E.A. (1977) Dynamic characteristics of free-burning and constricted welding arc of direct current with nonconsumable electrode. Svarochn. Proizvodstvo, 4, 3-5 [in Russian].
6. Omar, A.A., Lundin, C.D. (1979) Pulsed plasma - pulsed GTA arcs: A study of the process variables. Welding J., Res. Suppl., 4, 97-105.
7. Cook, G.E., Eassa, H.E.-D.E.H. (1985) The effect of high-frequency pulsing of a welding arc. IEEE Transact. on Industrial Application, 1A-21, 5, 1294-1299. https://doi.org/10.1109/TIA.1985.349557
8. Kolasa, A., Matsunawa, A., Arata, Y. (1986) Dynamic characteristics of variable frequency pulsed TIG arc. Transact. of JWRI, 15(2), 173-177.
9. Saedi, H.R., Unkel, W. (1988) Arc and weld pool behavior for pulsed current GTAW. Welding J., Res. Suppl., 11, 247-255.
10. Zhao, J., Sun, D., Hu, S. (1992) Arc behavior of high frequency pulse TIG welding arc. Transact. China Weld Inst., 13(1), 59-66.
11. Kim, W.H., Na, S.J. (1998) Heat and fluid flow in pulsed current GTA weld pool. Int. J. of Heat and Mass Transfer, 41(21), 3213-3227. https://doi.org/10.1016/S0017-9310(98)00052-0
12. Wu, C.S., Zheng, W., Wu, L. (1999) Modelling the transient behaviour of pulsed current tungsten-inert-gas weld pools. Modelling and Simul. Mater. Sci. Eng., 7(1), 15-23. https://doi.org/10.1088/0965-0393/7/1/002
13. Dzelnitzki, D. (2000) Muendersbach TIG - direct-current welding with high-frequency pulses, an interesting process variant. EWM Hightec Welding GmbH. 200. WM008801. DOC; 08.00.
14. Onuki, J., Anazawa, Y., Nihei, M. et al. (2002) Development of a new high-frequency, high-peak current power source for high constricted arc formation. Japan. J. Appl. Phys., 41, 5821-5826. https://doi.org/10.1143/JJAP.41.5821
15. Song, Y., Yan, S., Xiao, T. et al. (2010) A Study on the macro-micro physical properties in pulsed arc plasma. Transact. of JWRI, 39(2), 17-18.
16. Wu, C.S. (2008) Welding heat process and pool geometry. Beijing, China Machine Press, 102-104.
17. Cong, B., Qi, B., Zhou, X. (2009) TIG arc behavior of ultrafast-convert high-frequency variable polarity square wave. Transact. China Welding Institution, 30(6), 87-90.
18. Traidia, A., Roger, F., Guyot, E. (2010) Optimal parameters for pulsed gas tungsten arc welding in partially and fully penetrated weld pools. Int. J. of Thermal Sci., 49, 1197-1208. https://doi.org/10.1016/j.ijthermalsci.2010.01.021
19. Traidia, A., Roger, F. (2011) Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding. Int. J. of Heat and Mass Transfer., 54, 2163-2179. https://doi.org/10.1016/j.ijheatmasstransfer.2010.12.005
20. Karunakaran, N., Balasubramanian,V. (2011) Effect of pulsed current on temperature distribution weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints. Transact. Nonferrous Met. Soc. China, 21, 278-286. https://doi.org/10.1016/S1003-6326(11)60710-3
21. Yang, M., Qi, B., Cong, B. et al. (2012) The influence of pulse current parameters on arc behavior by austenite stainless steel. Transact. China Welding Institution, 33(10), 67-71.
22. Qi, B., Yang, M., Cong, B. et al. (2012) Study on fast-convert ultrasonic frequency pulse TIG welding arc characteristic. Mater. Sci. Forum., 704-705, 745-751. https://doi.org/10.4028/www.scientific.net/MSF.704-705.745
23. Qi, B., Yang, M., Cong, B. et al. (2013) The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel. Int. J. Adv. Manuf. Technol., 66, 1545-1553. https://doi.org/10.1007/s00170-012-4438-z
24. Yang, M., Qi, B., Cong, B. et al. (2013) Study on electromagnetic force in arc plasma with UHFP-GTAW of Ti-6Al-4V. IEEE Transact. on Plasma Sci., 41(9), 2561-2568. https://doi.org/10.1109/TPS.2013.2274810
25. Yang, Z., Qi, B., Cong, B. et al. (2013) Effect of pulse frequency on weld appearance behavior by TC4 titanium alloys. Transact. China Welding Institute, 34(12), 37-40.
26. Krivtsun, I.V., Krikent, E.V., Demchenko, V.F. (2013) Modelling of dynamic characteristics of a pulsed arc with refractory cathode. The Paton Welding J., 7, 13-23.
27. Yang, M., Yang, Z., Cong, B. et al. (2014) A study on the surface depression of the molten pool with pulsed welding. Welding J., Res. Suppl., 93(8), 312-319.
28. Yang, M., Yang, Z., Qi, B. (2015) The effect of pulsed frequency on the plasma jet force with ultra high frequency pulsed arc welding. IIW, 8, 875-882. https://doi.org/10.1007/s40194-015-0261-0
29. Sydorets, V.N., Krivtsun, I.V., Demchenko, V.F. et al. (2016) Calculation and experimental research of static and dynamic volt-ampere characteristics of argon arc with refractory cathode. The Paton Welding J., 2, 2-8. https://doi.org/10.15407/tpwj2016.02.01
30. Cunha ,T.V.d., Louise-Voigt ,A., Bohorquez, C.E.N. (2016) Analysis of mean and RMS current welding in the pulsed TIG welding process. J. Materials Proc. Technology, 231, 449-455. https://doi.org/10.1016/j.jmatprotec.2016.01.005
31. Silva, D.C.C., Scotti, A. (2016) Using either Mean or RMS values to represent current in modeling of arc welding bead geometries. Ibid., 240, 382-387. https://doi.org/10.1016/j.jmatprotec.2016.10.008
32. Demchenko, V.F., Boi, U., Krivtsun, I.V., Shuba, I.V. (2017) Effective values of electrodynamic characteristics of the process of nonconsumable electrode welding with pulse modulation of arc current. The Paton Welding J., 8, 2-11. https://doi.org/10.15407/tpwj2017.08.01
33. Nestor, O.H. (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J. Appl. Phys., 33(5), 1638-1648. https://doi.org/10.1063/1.1728803
34. Demchenko, V.F., Boi, U., Krivtsun, I.V. et al. (2016) Procedure of density distribution restoration of electric current in arc anode spot with refractory cathode according to experimental data obtained by the method of split anode. In: Proc. of 8th Int. Conf. on Mathematical Modeling and Information Technologies in Welding and Related Processes (19-23 September 2016, Odessa Ukraine), 21-28.
35. Grim, G. (1978) Spectral line broadening in plasma. Moscow, Mir [in Russian].