Print
2025 №06 (01) DOI of Article
10.37434/as2025.06.02
2025 №06 (03)


"Avtomatychne Zvaryuvannya" (Automatic Welding), #6, 2024, pp. 10-17

Features of formation of biocompatible coatings from silverdoped hydroxyapatite powder by microplasma spraying

S.M. Kaliuzhnyi1, S.Yu. Maksymov1, S.G. Voinarovych1, O.M. Kyslytsia1, N.V. Ulyanchich2, V.V. Kolomiiets2, V.M. Teplyuk1, N.V. Prokhorenkova3

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: 14dep_pwi@ukr.net
2Frantsevich Institute for Problems of Materials Science of the NAS of Ukraine. 3 Omeliana Pritsaka Str., 03142, Kyiv, Ukraine. E-mail: dir@ipms.kyiv.ua
3School of Traditional and Alternative Energy, D. Serikbayev East Kazakhstan Technical University, 69 Protozanov St., Ust-Kamenogorsk, 070004, Kazakhstan. E-mail: kense@edu.ektu.kz

The work investigates the formation of bioceramic coatings from hydroxyapatite (HAp) doped with silver (HAp+Ag) using the microplasma spraying (MPS) method on titanium substrates. The influence of MPS technological parameters (current, plasmaforming gas flow rate, spraying distance) and particle size of the powder on the degree of particle melting, surface morphology and phase composition of the coatings was analyzed. It was established that optimization of MPS modes in an argon microplasma jet makes it possible to control the thermal decomposition of HAp and the ratio of crystalline to amorphous phases during the formation of HAp+Ag coatings. It was proven that HAp+Ag coatings produced by MPS exhibit antibacterial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa: they completely inhibit the growth of E. coli and significantly reduce the viability of the other tested microorganisms. HAp+Ag coatings on a zirconium interlayer demonstrated an adhesion strength exceeding 15 MPa, which is sufficient for their application on implant surfaces. The obtained results confirm the effectiveness of the applied MPS method and its prospects for creating economical, technologically optimized, and biofunctional coatings on titanium implants. 38 Ref., 2 Tabl., 5 Fig.
Keywords: microplasma spraying, biocompatible coating, silver-doped hydroxyapatite, splat test, phase composition of coatings


Received: 03.10.2025
Received in revised form: 18.11.2025
Accepted: 23.12.2025

References

1. Eliaz, N., & Metoki-Shlubsky, N. (2017). Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. Materials, 10(4), 334. https://doi.org/10.3390/ma10040334
2. Heimann, R. B. (2024). Plasma-Sprayed Osseoconductive Hydroxylapatite Coatings for Endoprosthetic Hip Implants: Phase Composition, Microstructure, Properties, and Biomedical Functions. Coatings, 14(7), 787. https://doi.org/10.3390/coatings14070787
3. Gupta, T. T., et al. (2020). Staphylococcus aureus aggregates on orthopedic materials under varying levels of shear stress. Applied and Environmental Microbiology, 86(19). https://doi.org/10.1128/aem.01234-20
4. Godoy-Gallardo, M., Eckhard, U., Delgado, L. M., de Roo Puente, Y. J. D., Hoyos-Nogués, M., Gil, F. J., & Perez, R. A. (2021). Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications. Bioactive Materials, 6(12), 4470–4490. https://doi.org/10.1016/j.bioactmat.2021.04.033
5. Dube, E., & Okuthe, G. E. (2025). Silver Nanoparticle-Based Antimicrobial Coatings: Sustainable Strategies for Microbial Contamination Control. Microbiology Research, 16(6), 110. https://doi.org/10.3390/microbiolres16060110
6. Rios-Pimentel, F. F., Méndez-González, M. M., & García-Rocha, M. (2023). A short review: hydroxyapatite coatings for metallic implants. Heat Treatment and Surface Engineering, 5(1). https://doi.org/10.1080/25787616.2023.2202002
7. Bansal, G., Gautam, R., Misra, J., & Mishra, A. (2023). Coating Methods for Hydroxyapatite-A Bioceramic Material. In Bioceramics. Springer. https://doi.org/10.1007/978-981-99-3549-9_13
8. Su, Y., Cockerill, I., Zheng, Y., Tang, L., Qin, Y.-X., & Zhu, D. (2019). Biofunctionalization of metallic implants by calcium phosphate coatings. Bioactive Materials, 4, 196–206. https://doi.org/10.1016/j.bioactmat.2019.05.001
9. Sun, L. (2018). Thermal Spray Coatings on Orthopedic Devices: When and How the FDA Reviews Your Coatings. Journal of Thermal Spray Technology, 27, 1160–1171. https://doi.org/10.1007/s11666-018-0759-2
10. Mohseni, E., Zalnezhad, E., & Bushroa, A. R. (2014). Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives, 48, 238–257. https://doi.org/10.1016/j.ijadhadh.2013.09.030
11. Khor, K. A., Li, H., & Cheang, P. (2004). Significance of melt-fraction in HVOF sprayed hydroxyapatite particles, splats and coatings. Biomaterials, 25(7–8), 1177–1186. https://doi.org/10.1016/j.biomaterials.2003.08.008
12. Alontseva, D., Azamatov, B., Safarova, Y., Voinarovych, S., & Nazenova, G. (2023). A Brief Review of Current Trends in the Additive Manufacturing of Orthopedic Implants with Thermal Plasma-Sprayed Coatings. Coatings, 13(7), 1175. https://doi.org/10.3390/coatings13071175
13. Weiss, S., Alontseva, D., Safarova, Y., Voinarovych, S., Obrosov, A., Yamanoğlu, R., Khoshnaw, F., Yavuz, H., Kaliuzhnyi, S., Krasavin, A., & Azamatov, B. (2025). Microplasma-Sprayed Titanium and Hydroxyapatite Coatings on Ti6Al4V Alloy: In vitro Biocompatibility and Corrosion Resistance: Part I. Johnson Matthey Technology Review, 69. https://doi.org/10.1595/205651325X17201903387613
14. Alontseva, D., Safarova, Y., Voinarovych, S., Obrosov, A., Yamanoglu, R., Khoshnaw, F., Yavuz, H. I., Nessipbekova, A., Syzdykova, A., Azamatov, B., Khozhanov, A., & Weiß, S. (2024). Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings. Coatings, 14(2), 206. https://doi.org/10.3390/coatings14020206
15. Borisov, Yu. S., Borisova, A. L., Tunick,A. Yu., Karpets, M. V., Vojnarovich, S. G., Kislica, A. N., & Kuzmich-Yanchuk, E. K. (2008). Effect of microplasma sputtering parameters on the structure, phase composition, and texture of coatings from hydroxyapatite. Automatic Welding, 4, 15–20.
16. Cizek, J., & Khor, K. A. (2012). Role of in-flight temperature and velocity of powder particles on plasma sprayed hydroxyapatite coating characteristics. Surface and Coatings Technology, 206(8–9), 2181–2191. https://doi.org/10.1016/j.surfcoat.2011.09.058
17. Dyshlovenko, S., Pawlowski, L., Roussel, P., et al. (2006). Relationship between plasma spray parameters and microcracking of hydroxyapatite coatings. Surface and Coatings Technology, 200(20–21), 3845–3855. https://doi.org/10.1016/j.surfcoat.2004.11.037
18. Gu, Y. W., Khor, K. A., & Cheang, P. (2003). In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid. Biomaterials, 24(9), 1603–1611. https://doi.org/10.1016/s0142-9612(02)00573-2
19. Bolelli, G., Sabiruddin, K., Lusvarghi, L., Gualtieri, E., Valeri, S., & Bandyopadhyay, P. P. (2010). FIB assisted study of plasma sprayed splat-substrate interfaces. Surface and Coatings Technology, 205(2), 363–371. https://doi.org/10.1016/j.surfcoat.2010.06.057
20. Fukumoto, M., Hayashi, H., & Yokoyama, T. (1995). Relationship between particle’s splat pattern and coating adhesive strength of HVOF sprayed Cu-alloy. Journal of Japan Thermal Spraying Society, 2(3), 149–156.
21. Yushenko, V., et al. (2006). Plasmatron for Spraying of Coatings. WO2004010747A1 – Google Patents.
22. Alontseva, D., Ghassemieh, E., Voinarovych, S., Kyslytsia, O., Polovetskyi, Y., Prokhorenkova, N., & Kadyruldina, A. (2019). Manufacturing and Characterization of Robot Assisted Microplasma Multilayer Coating of Titanium Implants. Johnson Matthey Technology Review, 64, 157–167. https://doi.org/10.1595/205651320x15737283268284
23. Dyshlovenko, S., Pateyron, B., Pawlowski, L., Murano D. (2004). Numerical simulation of hydroxyapatite powder behaviour in plasma jet. Surface and Coatings Technology, 179(1), 110–117. https://doi.org/10.1016/S0257-8972(03)00890-9
24. Morks M. F., Kobayashi A. (2007). Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings. Materials Science and Engineering: B., 139(2-3), 209–215. https://doi.org/10.1016/j.mseb.2007.02.008
25. Brossard S., Munroe P. R., Tran A. T. T., and Hyland M. M. (2010) Study of the effects of surface chemistry on splat formation for plasma sprayed NiCr onto stainless steel substrates, Surface and Coatings Technology, 204(9-10), 1599–1607, 2-s2.0-71049164591. https://doi.org/10.1016/j.surfcoat.2009.10.008
26. Chandra S. and Fauchais P., (2009). Formation of solid splats during thermal spray deposition, Journal of Thermal Spray Technology. 18(2), 148–180, 2-s2.0-67349102724. https://doi.org/10.1007/s11666-009-9294-5
27. Xing Y. Z. and Li C. J., (2009). Bonding characteristics of a plasma-sprayed Yttria-stabilized zirconia splat on a hightemperature substrate, Proceedings of the 4th Asian Thermal Spray Conference, 285–288.
28. Fauchais P., (2004). Understanding plasma spraying. Journal of Physics D: Applied Physics. 37(9), R86–R108. https://doi.org/10.1088/0022-3727/37/9/R02
29. Heimann, R.B. (2016) Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties. J Therm Spray Tech 25, 827–850. https://doi.org/10.1007/s11666-016-0421-9
30. Klein, C. P. A. T., de Blieck-Hogervorst, J. M. A., Wolke, J. G. C., et al. (1990). Studies of the solubility of different calcium phosphate ceramic particles in vitro. Biomaterials, 11(7), 509–512. https://doi.org/10.1016/0142-9612(90)90067-z
31. Yang, C. Y., Wang, B. C., Chang, E., & Wu, B. C. (1995). The influences of plasma spraying parameters on the characteristics of hydroxyapatite coatings: a quantitative study. Journal of Materials Science: Materials in Medicine, 6(4), 249–257. https://doi.org/10.1007/bf00120267
32. Vardelle, A., Moreau, C., Themelis, N. J., et al. (2015). A perspective on plasma spray technology. Plasma Chemistry and Plasma Processing, 35(3), 491–509. https://doi.org/10.1007/s11090-014-9600-y
33. Borisov, Yu. S., Borisova, A. L. (1986). Plasma powder coatings. Kyiv: Technica.
34. Dyshlovenko, S., Pawlowski, L., & Roussel, P. (2005). Experimental investigation of influence of plasma spraying operational parameters on properties of hydroxyapatite. In Thermal Spray Connects: Explore its surfacing potential! ASM International, 726–731.
35. Yang, Y., Kim, K.-H., & Ong, J. L. (2005). A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials, 26(3), 327–337. https://doi.org/10.1016/j.biomaterials.2004.02.029
36. McPherson, R., Gane, N., & Bastow, T. J. (1995). Structural characterization of plasma-sprayed hydroxyapatite coatings. Journal of Materials Science: Materials in Medicine, 6(6), 327–334.
37. LeGeros, R. Z. (2002). Properties of osteoconductive biomaterials: calcium phosphates. Clinical Orthopaedics and Related Research, 395, 81–98. https://doi.org/10.1097/00003086-200202000-00009
38. Voinarovych, S., Maksimov, S., Kaliuzhnyi, S., Kyslytsia, O., Safarova, Y., & Alontseva, D. (2025). Functional Assessment of Microplasma-Sprayed Hydroxyapatite-Zirconium Bilayer Coatings: Mechanical and Biological Perspectives. Materials, 18(14), 3405. https://doi.org/10.3390/ma18143405

Advertising in this issue: