| 2025 №06 (03) |
DOI of Article 10.37434/as2025.06.04 |
2025 №06 (05) |
"Avtomatychne Zvaryuvannya" (Automatic Welding), #6, 2024, pp. 30-42
Actual problems of laser welding of thin-walled products made of corrosion-resistant high-alloy steels (Review)
Yu.V. Yurchenko
E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. Е-mail: yurchenko@paton.kiev.uaThe paper reviews current scientific research on laser welding of thin-walled products made of corrosion-resistant steels. Particular attention is paid to problems affecting the quality of welded joints in products with thin walls. One such problem is the formation of craters at the end of the weld, which is often observed in the manufacture of girth welded joints. It has been established that an effective approach to reducing this defect is to use smooth regulation of the laser radiation power at the beginning and end of the welding process using different types of modulation, as well as overlapping the weld and performing an additional smoothing pass. Another important aspect is ensuring stable gas protection during welding in a narrow gap between the clamping elements. Design solutions that contribute to the formation of a laminar flow of shielding gas are considered, in particular the use of gas distribution elements made of sintered porous materials or metal meshes, which reduce the turbulence and improve the effectiveness of protecting the welding zone from atmospheric influences. The problem of deformations and residual stresses caused by the local influence of the heat source is analyzed separately. It has been established that the use of copper substrates, the optimal location of clamping elements, and the optimization of laser welding parameters can significantly reduce the level of thermal deformations and can ensure high geometric accuracy of joints. Based on the results of the review, the main problems of laser welding of thin-walled products made of corrosion-resistant high-alloy steels were identified, options for their solution were considered, and prospects for further research in these areas were outlined. 65 Ref., 1 Tabl., 9 Fig.
Keywords: laser welding, high-alloy corrosion-resistant steels, thin-walled products, welding problems, craters, gas shielding, deformationsОтримано
Received: 25.06.2025
Received in revised form: 08.10.2025
Accepted: 27.11.2025
References
1. Azanaw, G.M. (2025) Thin-walled structures in structural engineering: A comprehensive review of design innovations, stability challenges, and sustainable frontiers. American J. of Materials Synthesis and Processing, 10(1), 18–26. DOI: https://doi.org/10.11648/j.ajmsp.20251001.132. Trzepieciński, T., Najm, S.M., Sbayti, M., Belhadjsalah, H., Szpunar, M., Lemu, H.G. (2021) New advances and future possibilities in forming technology of hybrid Metal–Polymer composites used in aerospace applications. J. of Composites Science, 5(8), 217. DOI: https://doi.org/10.3390/jcs5080217
3. Zhou, B., Liu, B., Zhang, S. (2021) The advancement of 7XXX series aluminum alloys for aircraft structures: A review. Metals, 11(5), 718. DOI: https://doi.org/10.3390/met11050718
4. Manfredi, J. (2019) Stainless steel application and fabrication in the biotech industry. In: Filtration and Purification in the Biopharmaceutical Industry. Third Edition. CRC Press, 169–190. DOI: https://doi.org/10.1201/9781315164953-8
5. Dewangan, A.K., Patel, A.D., Bhadania, A.G. (2015) Stainless steel for dairy and food industry: A review. J. of Material Science & Engineering, 4, 5. DOI: https://doi.org/10.4172/2169-0022.1000191
6. Dutta, S. (2018) Different types and new applications of stainless steel. Stainless steel, 62(5), 86–91. https://www.researchgate.net/profile/S-Dutta/publication/330383386_Different_Types_and_New_Applications_of_Stainless_Steel/links/5c3d6a31a6fdccd6b5ad9ee0/Different-Typesand-New-Applications-of-Stainless-Steel.pdf
7. Zheng, C., Yu, W. (2018) Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel. Materials Science and Engineering: A, 710, 359–365. DOI: https://doi.org/10.1016/j.msea.2017.11.003
8. Sunny, K.T., Korra, N.N. (2021) A systematic review about welding of super austenitic stainless steel. Materials Today Proceedings, 47, 4378–4381. DOI: https://doi.org/10.1016/j.matpr.2021.05.185
9. ISO 15510:2014. (2014) Stainless steels – Chemical composition, Edition 2. International Organization for Standardization. https://www.iso.org/obp/ui/en/#iso:std:iso:15510:ed-2:v1:en
10. Boulos, M. I., Fauchais, P., Pfender, E. (2023) Plasma torches for cutting, welding and PTA coating. Springer eBooks, pp. 1–83. DOI: https://doi.org/10.1007/978-3-319-12183-3_47-1
11. Węglowski, M., Błacha, S., Phillips, A. (2016) Electron beam welding – Techniques and trends – Review. Vacuum, 130, 72–92. DOI: https://doi.org/10.1016/j.vacuum.2016.05.004
12. Ogundimu, E.O., Akinlabi, E.T., Erinosho, M.F. (2019) Comparative study between TIG and MIG welding processes. J. of Physics Conference Series, 1378(2), 022074. DOI: https://doi.org/10.1088/1742-6596/1378/2/022074
13. Khoshnaw, F., Krivtsun, I., Korzhyk, V. (2023) Welding of Metallic Materias. Methods, Metallurgy, and Performanc. Chapter 2 – Arc welding methods. Elsevier eBooks, pp. 37–71. DOI: https://doi.org/10.1016/b978-0-323-90552-7.00004-3
14. Ahmad, A.Y., Al-Qenaei (2016) Fusion welding techniques. International J. of Engineering Research and Applications, 6(3), 78–83. https://www.academia.edu/download/47559936/M6302078083.pdf
15. Yurchenko, Yu.V,. Bernatskyi, A.V., Siora, O.V., Sokolovskyi, M.V., Bondarieva, V.I. (2024) Analysis of actual problems of laser welding of stainless steel thin sheets and search for solutions. International J. of Science Engineering and Technology, 12(5), 1–9. DOI: https://doi.org/10.61463/ijset.vol.12.issue5.289
16. Singh, A., Singh, S. (2024). Laser Welding Machine Market Size, Forecast 2024 – 2032. In: Global Market Insights Inc. https://www.gminsights.com/industry-analysis/laserwelding-machine-market
17. (2022) Laser Welding Market Size, Industry Share & Trends – 2032. https://www.futuremarketinsights.com/reports/laserbeam-welding-equipment-market
18. Allied Market Research (2023) Laser Welding System Market Size, Share, Competitive Landscape and Trend Analysis Report, By Laser type, by power, By Application: Global Opportunity Analysis and Industry Forecast, 2023–2032. Allied Market Research. https://www.alliedmarketresearch. com/laser-welding-system-market-A135089
19. DSTU 3761.3–98. Welding and allied processes. Part 3. Welding of metals: welded joints and welds, technology, materials and equipment. Terms and definitions.
20. Kenda, M., Klobčar, D., Nagode, A., Bračun, D. (2021) Analysis and prevention of weld crater cracking in circumferential laser microwelding of automotive pressure sensors. Engineering Failure Analysis, 128, 105579. DOI: https://doi.org/10.1016/j.engfailanal.2021.105579
21. Artinov, A., Karkhin, V., Bachmann, M., Rethmeier, M. (2020) Mathematical modeling of the geometrical differences between the weld end crater and the steady-state weld pool. J. of Laser Applications, 32, 022024. DOI: https://doi.org/10.2351/7.0000068
22. Lai, W.J., Ganguly, S., Suder, W. (2020) Study on effect of laser keyhole weld termination regimes and material composition on weld overlap start-stop defects. J. of Manufacturing Processes, 58, 416–428. DOI: https://doi.org/10.1016/j.jmapro.2020.08.012
23. Norouzian, M., Elahi, M.A., Plapper, P. (2023) A review: Suppression of the solidification cracks in the laser welding process by controlling the grain structure and chemical compositions. J. of Advanced Joining Processes, 7, 100139. DOI: https://doi.org/10.1016/j.jajp.2023.100139
24. Wang, D., Zhang, F., Warinsiriruk, E., Zhu, Q., Li, T., Li, H., Xu, N., Han, K., Wang, Z., Yang, S. (2024) A novel method for evaluating solidification cracking susceptibility of austenitic stainless steel using trapezoidal hot cracking test during laser welding. Optics & Laser Technology, 175, 110789. DOI: https://doi.org/10.1016/j.optlastec.2024.110789
25. Gook, S., Üstündag, Ö., Gumenyuk, A., Rethmeier, M. (2019) Avoidance of end crater imperfections at high-power laser beam welding of closed circumferential welds. Welding in the World, 64, 407–417. DOI: https://doi.org/10.1007/s40194-019-00841-x
26. Łabanowski, J., Głowacka, M. (2011) Heat tint colours on stainless steel and welded joints. Welding International, 25(7), 509–512. DOI: https://doi.org/10.1080/09507116.2010.540837
27. Bobić, B., Jegdić, B., Gligorijević, B. (2014) Analysis of corrosion damage in a boiler made of AISI 304L stainless steel. Zastita Materijala, 55(1), 33–37. DOI: https://doi.org/10.5937/zasmat1401033b
28. McNicol, J., Narayanan, B., Sridhar, N., Fink, C. (2022) Corrosion resistance of austenitic stainless steel welds with no-backing gas. Welding in the World, 67, 819–830. DOI: https://doi.org/10.1007/s40194-022-01442-x
29. Wickström, L., Hinds, G., Turnbull, A. (2015) Influence of weld preparation procedure and heat tinting on sulfide stress corrosion cracking of duplex stainless steel. CORROSION, 71(8), 1036–1047. DOI: https://doi.org/10.5006/1645
30. Schricker, K., Baumann, A., Bergmann, J.P. (2021) Local shielding gas supply in remote laser beam welding. J. of Manufacturing and Materials Processing, 5(4), 139. DOI: https://doi.org/10.3390/jmmp5040139
31. Schmidt, L., Hickethier, S., Schricker, K., Bergmann, J.P. (2019) Low-spatter high speed welding by use of local shielding gas flows. High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VIII, 10911, 185–197. DOI: https://doi.org/10.1117/12.2507024
32. Gersten, K. (1998) Turbulent Boundary Layers I. In: Kluwick, A. (eds) Recent Advances in Boundary Layer Theory. CISM International Centre for Mechanical Sciences, Vol. 390. Springer, Vienna. DOI: https://doi.org/10.1007/978-3-7091-2518-2_5
33. Gersten, K., Herwig, H. (1992) Strömungsmechanik. Grundlagen der Impuls-, Wärme- und Stoffübertragung aus asymptotischer Sicht. Textbook. DOI: https://doi.org/10.1007/978-3-322-93970-8
34. Gogineni, S., Shih, C. (1997) Experimental investigation of the unsteady structure of a transitional plane wall jet. Experiments in Fluids, 23, 121–129. DOI: https://doi.org/10.1007/s003480050093
35. Blackburn, J., Allen, C., Hilton, P., Li, L. (2010) Nd: YAG laser welding of titanium alloys using a directed gas jet. J. of Laser Applications, 22, 71–78. DOI: https://doi.org/10.2351/1.3455825
36. Vyskoč, M., Sahul, M., Dománková, M., Jurči, P., Sahul, M., Vyskočová, M., Martinkovič, M. (2020) The effect of process parameters on the microstructure and mechanical properties of AW5083 aluminum laser weld joints. Metals, 10(11), 1443. DOI: https://doi.org/10.3390/met10111443
37. Deepan Bharathi Kannan, T., Sathiya, P., Ramesh, T. (2017) Experimental investigation and characterization of laser welded NiTinol shape memory alloys. J. of Manufacturing Processes, 25, 253–261. DOI: https://doi.org/10.1016/j.jmapro.2016.12.006
38. Campana, G., Ascari, A., Fortunato, A., Tani, G. (2008) Hybrid laser-MIG welding of aluminum alloys: The influence of shielding gases. Applied Surface Science, 255(10), 5588–5590. DOI: https://doi.org/10.1016/j.apsusc.2008.07.169
39. Wang, H., Shi, Y., Gong, S., Duan, A. (2007) Effect of assist gas flow on the gas shielding during laser deep penetration welding. J. of Materials Processing Technology, 184(1–3), 379–385. DOI: https://doi.org/10.1016/j.jmatprotec.2006.12.014
40. Jegdić, B.V., Bobić, B.M., Prokolab, M.M. (2013) Influence of heat tint on corrosion resistance of stainless steels. Zavarivanje I Zavarene Konstrukcije, 58(3), 121–126. https://scindeks.ceon.rs/article.aspx?artid=0354-79651303121J
41. Frantsen, J.E., Mathiesen, T., Hattesen, K.U., Cheepsujjayan, P., Bertelsen, B., Aller, H.C. (2008) Common corrosion problems in the brewery sector. Force Technology, NACE-08176. https://onepetro.org/NACECORR/proceedingsabstract/CORR08/All-CORR08/118824
42. Mahajanam, S., Heidersbach, K. (2021). Corrosion studies of heat-tinted austenitic stainless steel. Material Performance. https://nace.mydigitalpublication.com/publication/?i=704427&article_id=4006538&view=articleBrowser&ver=html5
43. Yu, Y., Shironita, S., Souma, K., Umeda, M. (2018) Effect of chromium content on the corrosion resistance of ferritic stainless steels in sulfuric acid solution. Heliyon, 4(11), e00958. DOI: https://doi.org/10.1016/j.heliyon.2018.e00958
44. Sun, M., Du, C., Liu, Z., Liu, C., Li, X., Wu, Y. (2021) Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere. Corrosion Science, 186, 109427. DOI: https://doi.org/10.1016/j.corsci.2021.109427
45. Zatkalíková, V., Uhríčik, M., Markovičová, L., Kuchariková, L. (2022) Corrosion Behavior of Sensitized AISI 304 Stainless Steel in Acid Chloride Solution. Materials, 15(23), 8543. DOI: https://doi.org/10.3390/ma15238543
46. Wu, X., Liu, Y., Sun, Y., Dai, N., Li, J., Jiang, Y. (2020) A discussion on evaluation criteria for crevice corrosion of various stainless steels. J. of Material Science and Technology, 64, 29–37. DOI: https://doi.org/10.1016/j.jmst.2020.04.017
47. Parangusan, H., Bhadra, J., Al-Thani, N. (2021) A review of passivity breakdown on metal surfaces: influence of chloride- and sulfide-ion concentrations, temperature, and pH. Emergent Materials, 4, 1187–1203. DOI: https://doi.org/10.1007/s42247-021-00194-6
48. Bansod, A.V., Patil, A.P., Moon, A.P., Khobragade, N.N. (2016) Intergranular corrosion behavior of Low-Nickel and 304 austenitic stainless steels. J. of Materials Engineering and Performance, 25, 3615–3626. DOI: https://doi.org/10.1007/s11665-016-2221-2
49. Toppo, A., Pujar, M., Sreevidya, N., Philip, J. (2018) Pitting and stress corrosion cracking studies on AISI type 316N stainless steel weldments. Defence Technology, 14(3), 226–237. DOI: https://doi.org/10.1016/j.dt.2018.03.004
50. Yoon, H., Ha, H., Lee, T., Kim, S., Jang, J. H., Moon, J., Kang, N. (2019) Pitting corrosion resistance and repassivation behavior of C-Bearing Duplex stainless steel. Metals, 9(9), 930. DOI: https://doi.org/10.3390/met9090930
51. Zhou, W., Ma, W., Li, Y., Sun, Y. (2021) Effect of sensitizing treatment on the microstructure and susceptibility to intergranular corrosion of High-Nitrogen austenitic stainless steel. Metallography Microstructure and Analysis, 10, 25–35. DOI: https://doi.org/10.1007/s13632-020-00708-4
52. Fujii, T., Suzuki, M., Shimamura, Y. (2022) Susceptibility to intergranular corrosion in sensitized austenitic stainless steel characterized via crystallographic characteristics of grain boundaries. Corrosion Science, 195, 109946. DOI: https://doi.org/10.1016/j.corsci.2021.109946
53. Cárcel-Carrasco, F., Pascual-Guillamón, M., García, L.S., Vicente, F.S., Pérez-Puig, M. (2019) Pitting corrosion in AISI 304 rolled stainless steel welding at different deformation levels. Applied Sciences, 9(16), 3265. DOI: https://doi.org/10.3390/app9163265
54. Ding, J., Colegrove, P., Martina, F., Williams, S., Wiktorowicz, R., Palt, M.R. (2015) Development of a laminar flow local shielding device for wire + arc additive manufacture. J. of Materials Processing Technology, 226, 99–105. DOI: https://doi.org/10.1016/j.jmatprotec.2015.07.005
55. Vykhtar, B., Lingner, M., Richter, A. M., Hoops, F. (2022) Monitoring and local gas shielding at laser-based welding of titanium alloys. Procedia CIRP, 111, 532c535. DOI: https://doi.org/10.1016/j.procir.2022.08.085
56. He, Y., Yang, Z., Yang, D., Duan, R., Xu, J., Wang, W., Shi, M., Xu, G., Chen, S. (2025) Numerical simulation of local cooling on residual stress and deformation of welded joints of unequal thickness plates. J. of Materials Research and Technology, 36, 8410–8420. DOi: https://doi.org/10.1016/j.jmrt.2025.05.057
57. Murakawa, H. (2013) Residual stress and distortion in laser welding. In: Handbook of Laser Welding Technologies. Woodhead Publishing Series in Electronic and Optical Materials. Elsevier eBooks, pp. 374–398. DOI: https://doi.org/10.1533/9780857098771.2.374
58. Unnikrishnan, R., Idury, K.S., Ismail, T., Bhadauria, A., Shekhawat, S., Khatirkar, R.K., Sapate, S.G. (2014) Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments. Materials Characterization, 93, 10–23. DOI: https://doi.org/10.1016/j.matchar.2014.03.013
59. Deepak, J., RP, A., Sundar, S.S. (2023) Applications of lasers in industries and laser welding: A review. Materialstoday: Proceedings, 28 February 2023. DOI: https://doi.org/10.1016/j.matpr.2023.02.102
60. Kumar, B., Bag, S., Mahadevan, S., Paul, C., Das, C., Bindra, K. (2021) On the interaction of microstructural morphology with residual stress in fiber laser welding of austenitic stainless steel. CIRP J. of Manufacturing Science and Technology, 33, 158–175. DOI: https://doi.org/10.1016/j.cirpj.2021.03.009
61. Korinko, P.S., Malene, S.H. (2001) Considerations for the weldability of types 304L and 316L stainless steel. Practical Failure Analysis, 1, 61–68. DOI: https://doi.org/10.1007/bf02715336
62. Hummelshøj, T.S., Christiansen, T.L., Somers, M.A. (2010). Lattice expansion of carbon-stabilized expanded austenite. Scripta Materialia, 63(7), 761–763. DOI: https://doi.org/10.1016/j.scriptamat.2010.05.031
63. Lin, Y., Chou, C. (1995) A new technique for reducing the residual stress induced by welding in type 304 stainless steel. J. of Materials Processing Technology, 48(1–4), 693–698. DOI: https://doi.org/10.1016/0924-0136(94)01710-i
64. Liu, Y., Wang, P., Fang, H., Ma, N. (2021) Mitigation of residual stress and deformation induced by TIG welding in thin-walled pipes through external constraint. J. of Materials Research and Technology, 15, 4636–4651. DOi: https://doi.org/10.1016/j.jmrt.2021.10.035
65. Mohammed, M.S., Hamdey, M.D., Kareem, A.H., Majdi, H.S. (2024) Investigation of copper backing plate effects in stainless steel welding distortion, heat distribution, and residual stress. International J. of Heat and Technology, 42(4), 1434–1446. DOI: https://doi.org/10.18280/ijht.420433




