2025 №03 (01) | 2025 №03 (03) |

"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #3, 19-28 pages
Prospects of ultrasound application in the production of dispersed granules by gas and plasma -arc atomization of metal melts and compact materials (Review)
V.M. Korzhyk, O.S. Tereshchenko, D.V. Strohonov, O.I. Demianov, O.V. Ganushchak
E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: vnkorzhykn@gmail.comAbstract
The technological features of using the ultrasonic vibrations for atomization of micro-volumes of metal melts in the following technologies of dispersed spherical powder production are considered: gas atomization, ultrasonic atomization on sonotrode, plasma arc atomization by means of ultrasonic standing wave, electric arc atomization with the application of ultrasound to the atomized wire, and plasma arc atomization with the application of ultrasonic vibrations to the atomized feedstock. The influence of ultrasonic vibrations on the process of melt droplet formation and detachment for the aforementioned methods is analyzed. It is established that the application of ultrasound promotes a reduction in the size of initial melt droplets, intensifies dispersion due to the creation of additional pressure on the melt droplets, and, as a result, contributes to the narrowing of the particle size distribution. It was found that among the analyzed approaches for obtaining spherical powders using high-frequency acoustic vibrations, the most promising is the technology of plasma arc atomization of wires and rods under the condition of applying ultrasound directly to the feedstock. An analysis of the efficiency and prospects of using plasma-arc atomization technologies with introduction of ultrasonic vibrations into the atomized feedstock is conducted, and it is assumed that this approach will allow increasing the yield of ~63 μm fraction powders up to 80…90 %, which is promising for application in the production of powders for additive manufacturing technologies. 45 Ref., 6 Fig.
Keywords: ultrasonic atomization, dispersion, plasma-arc atomization, gas atomization, spherical powders, particle size distribution
Received: 23.04.2025
Received in revised form: 28.04.2025
Accepted: 22.07.2025
References
1. Shoh, A. (1975) Industrial applications of ultrasound — A review I. High-power ultrasound. IEEE Transact. on Sonics and Ultrasonics, 22(2), 60–70. DOI: https://doi.org/10.1109/tsu.1975.307802. Škamat, J., Valiulis, A.V. (2010) About the possibility of using ultrasound in thermal spray technologies. Mokslas-Lietuvos Ateitis, 2(4), 39–41. DOI: https://doi.org/10.3846/mla.2010.066
3. Kumar, S., Wu, C.S., Padhy, G.K., Ding, W. (2017) Application of ultrasonic vibrations in welding and metal processing: A status review. J. of Manufacturing Proc., 26, 295–322. DOI: https://doi.org/10.1016/j.jmapro.2017.02.027
4. Li, Y., Wu, C., Chen, M. (2020) Effects of ultrasonic vibration on the transport coefficients in plasma arc welding. Metals, 10(3), 312. DOI: https://doi.org/110.3390/met10030312
5. Wu, C.S., Zhao, C.Y., Zhang, C., Li, Y.F. (2017) Ultrasonic vibration assisted keyholing plasma arc welding. Welding J., 96, 279–287
6. Qiao, J., Wu, C-S., Li, Y. (2020) Numerical and experimental investigation of keyholing process in ultrasonic vibration assisted plasma arc welding. J. of Manufacturing Proc., 50, 603–613. DOI: https://doi.org/10.1016/j.jmapro.2020.01.019
7. Fan, C.L., Yang, C.L., Lin, S.B., Fan, Y.Y. (2013) Arc characteristics of ultrasonic wave-assisted GMAW. Welding J., 92(12), 375–380.
8. Fan, C., Zhou, L., Liu, Z. et al. (2018) Arc character and droplet transfer of pulsed ultrasonic wave-assisted GMAW. Inter. J. Ad. Manuf. Technol., 95, 2219–2226. DOI: https://doi.org/10.1007/s00170-017-1414-7
9. Weifeng, X., Fan, C.L., Yang, C.L., Lin (2016) Pulsed ultrasonic wave assisted GMAW of 7 A 52 aluminum alloy. Welding J., 95, 239–247.
10. Luo, J., He, Z., Liu, Z. et al. (2024) The influence of coaxial ultrasound on the droplet transfer of high nitrogen steel GMAW process. Materials, (17), 5509, 14. DOI: https://doi.org/10.3390/ma17225509
11. Fan, Y.Y., Yang, C.L., Sanbao, L. et al. (2012) Ultrasonic wave assisted GMAW: A novel method adds ultrasonic wave to provide an additional force to detach the droplet. Welding J., 91, 91–99.
12. Zheng, H, Qi, B., Yang, M. (2021) Dynamic analysis of the ultrasonic-frequency pulsed GMAW metal transfer process. J. of Manufacturing Proc., 62, 283–290. DOI: https://doi.org/10.1016/j.jmapro.2020.12.049
13. Kaiyuan, W., Jing, L., Haoran, Y. et al. (2024) Influence of high-frequency pulse on droplet transfer process and weld formation in double-wire median pulsed GMAW of aluminum alloy. Research square. https://www.researchsquare.com/article/rs-4308754/v1
14. Ghosh Prakriti K., Lutz Dorn M.C. Hübner, Vinay K. Goyal (2007) Arc characteristics and behaviour of metal transfer in pulsed current GMA welding of aluminium alloy. J. of Materials Proc. Technology, 194, 163–175.
15. Shanthar, R., Chen, K., Abeykoon, C. (2023) Powder-based additive manufacturing: a critical review of materials, methods, opportunities, and challenges. Advanced Eng. Materials, (25), 2300375, 43. DOI: https://doi.org/10.1002/adem.202300375
16. Fatemeh, A.T., Zobaideh, H., Kahrizsangi, S. et al. (2024) Spreadability of powders for additive manufacturing: a critical review of metrics and characterisation methods. Particuology, 93, 211–234. DOI: https://doi.org/10.1016/j.partic.2024.06.013
17. Barreras, F., Amaveda, H., Lozano, A. (2002) Transient high-frequency ultrasonic water atomization. Experiments in Fluids, 33, 405–413. DOI: https://doi.org/10.1007/s00348-002-0456-1
18. Lozano, A., García, J., Alconchel, J. et. al. (2017) Influence of liquid properties on ultrasonic atomization. In: Proc. of 28th European Conf. on Liquid Atomization and Spray Systems (ILASS2017). DOI: https://doi.org/10.4995/ILASS2017.2017.4588
19. Rajan, R., Pandit, A.B. (2001) Correlations to predict droplet size in ultrasonic atomisation. Ultrasonics, 39(4), 235–255. DOI: https://doi.org/10.1016/s0041-624x(01)00054-3
20. Camacho-Lie, M., Antonio-Gutiérrez, O., López-Díaz, A.S. et al. (2023) Factors influencing droplet size in pneumatic and ultrasonic atomization and its application in food processing. Discover Food, 3(23). DOI: https://doi.org/10.1007/s44187-023-00065-5
21. Dobre, M., Bolle, L. (2002) Practical design of ultrasonic spray devices: Experimental testing of several atomizer geometries. Experimental Thermal and Fluid Sci., 26, 205–211. DOI: https://doi.org/10.1016/S0894-1777(02)00128-0
22. Patil, M.N., Pandit, A.B., Thorat, B.N. (2007) Ultrasonic atomisation assisted spray drying. In: Proc. of the 5th Asia-Pacific Drying Conf., 255–261. DOI: https://doi.org/10.1142/9789812771957_0036
23. Khaire, R., Gogate, P. (2020) Novel approaches based on ultrasound for spray drying of food and bioactive compounds. Drying Technology, 39(12), 1832–1853. DOI: https://doi.org/10.1080/07373937.2020.180492639
24. Marie, A., Tourbin, M., Robisson, A.C. et al. (2021) Wet size measurements for the evaluation of the deagglomeration behaviour of spray-dried alumina powders in suspension. Ceramics Inter., 48(6), 7926–7936. DOI: https://doi.org/10.1016/j.ceramint.2021.11.340
25. Nandiyanto, A., Okuyama, K. (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 22 (1), 1–19. DOI: https://doi.org/10.1016/j.apt.2010.09.011
26. Zhou, K., Han, C. (2023) Metal powder-based additive manufacturing. 319. DOI: https://doi.org/10.1002/9783527822249
27. Chen, G., Zhao, S., Tan, P. et al. (2018) A comparative study of Ti–6Al–4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology, 333, 38–46. DOI: https://doi.org/10.1016/j.powtec.2018.04.013
28. Rai, G., Lavernia, E., Grant, N. J. (1985) Powder size and distribution in ultrasonic gas atomization. JOM, 37(8), 22–26. DOI: https://doi.org/10.1007/bf03257674
29. Baram, J. (1988) Pressure characteristics at the pour-tube orifice in ultrasonic gas atomization. Materials Sci. and Eng., 98, 65–69. DOI: https://doi.org/10.1016/0025-5416(88)90128-0
30. Anand, V., Kaufman, A.J., Grant, N. (1978) Rapid solidification of a modified 7075 aluminum alloy by ultrasonic gas atomization. Rapid Solidification Processing, Principles and Technologies, II, Claitor, Baton Rouge, LA, 273–286.
31. Orlov, Y., Mamedov, B. (1983) Ultrasonic atomization of liquid metals. Powder Metallurgy and Metal Ceramics, 22(4), 254–255. DOI: https://doi.org/10.1007/bf00795594
32. Żrodowski, Ł., Wróblewski, R., Choma, T. et al. (2021) Novel cold crucible ultrasonic atomization powder production method for 3D printing. Materials,14(10), 2541, 11. DOI: https://doi.org/10.3390/ma14102541
33. Halapi, D., Varga, L. (2023) Ultrasonic powder atomization for additive manufacturing. Inter. J. of Eng. and Management Sci., 8(2), 69–75. DOI: https://doi.org/10.21791/IJEMS.2023.2.8
34. Bałasz, B., Bielecki, M., Gulbiński, W., Słoboda, Ł. (2023) Comparison of ultrasonic and other atomization methods in metal powder production. J. of Achievements in Materials and Manufacturing Eng., 116(1), 11–24. DOI: https://doi.org/10.5604/01.3001.0016.3393
35. Priyadarshi, A., Shahrani, S., Choma T. et. al. (2024). New insights into the mechanism of ultrasonic atomization for the production of metal powders in additive manufacturing. Additive Manufacturing, 83(1), 104033, 20. DOI: https://doi.org/10.1016/j.addma.2024.104033
36. Bauckhage, K., Andersen, O., Hansmann, S. et al. (1996) Production of fine powders by ultrasonic standing wave atomization. Powder Technology, 86(1), 77–86. DOI: https://doi.org/10.1016/0032-5910(95)03040-9
37. Andersen, O., Hansmann, S., Bauckhage, K. (1996) Production of fine particles from melts of metals or highly viscous fluids by ultrasonic standing wave atomization. Particle & Particle Systems Characterization, 13(3), 217–223. DOI: https://doi.org/10.1002/ppsc.19960130308
38. Irisarri, J., Ezcurdia, I., Iriarte, N. et al. (2025) Electric plasma guided with ultrasonic fields. Sci. Advances, 11(6): eadp0686. 6. DOI: https://doi.org/10.1126/sciadv.adp0686
39. Korzhyk, V.M., Strogonov, D.V., Burlachenko, O.M. et al. (2024) Development of hybrid technology of producing spherical powders from wire materials using high-speed plasma jets and electric arc. Suchasna Elektrometalurhiya, 3, 36–44. DOI: https://doi.org/10.37434/sem2024.03.05
40. Chen, D., Daoud, H., Scherm, F. et al. (2020) Stainless steel powder produced by a novel arc spray process. J. of Materials Research and Technology, 9, 8314–8322. DOI: https://doi.org/10.1016/j.jmrt.2020.05.076
41. Dietrich, S., Zaeh, M.F. (2019) Arc-based powder production of AlSi7Mg0.6. Procedia Manufacturing, 40, 27–31. DOI: https://doi.org/10.1016/j.promfg.2020.02.006
42. Strogonov, D.V., Korzhyk, V.M., Jianglong, Yi et al. (2022) Influence of the parameters of the process of plasma-arc spheroidization of current-conducting wire from low-carbon steel on the granulometric composition of the produced powders. Suchasna Elektrometalurhiya, 3, 29–37. DOI: https://doi.org/10.37434/sem2022.03.05
43. Dion, C., Carabin, P., Kreklewetz, W. (2021) Plasma apparatus for the production of high quality spherical powders at high capacity. European Pat. EP3302855B1.
44. https://pyrogenesisadditive.com/#plasmaAtomization
45. Korzhyk, V.M., Strohonov, D.V., Burlachenko, O.M. et al. (2023) Development of plasma-arc technologies of spherical granule production for additive manufacturing and granule metallurgy. The Paton Welding J., 12, 3–18. DOI: https://doi.org/10.37434/tpwj2023.12.01