Print

2013 №11 (16) 2013 №11 (18)


The Paton Welding Journal, 2013, #10/11, 117-123 pages

PLASMA PROCESSES IN METALLURGY AND TECHNOLOGY OF INORGANIC MATERIALS

Yu.V. TSVETKOV, A.V. NIKOLAEV and A.V. SAMOKHIN

A. Baikov Institute of Metallurgy and Materials Science of the RAS (Russia). 49 Leninskii avenue, 119991, Moscow, Russia. E-mail:tsvetkov@imet.ac.ru


Abstract
Equipment-technological classification of plasma processes in metallurgy and material treatment is stated. It allowed evaluating the prospects of plasma process practical application and ways for structural-technological arrangement optimizing. The equipment for shaft furnaces with plasma heating and processes of plasma effect on metallurgical melts have close prototypes in classical metallurgy. Jet-plasma processes, oriented on receiving of substances in dispersed state, require development of the original equipment. The authors realized the processes of hydrogen-plasma reduction of refractory metal oxides, plasma reduction melting of oxides of iron group and production of metal compounds (carbides, nitrides, oxides, etc.) allowing manufacture of products in a form of dispersed powders. They differ by possibility of energy- and resource saving, receiving of products with specific service properties and environmental compatibility. Proposed is a concept of modular energy-technological complex joining energy generation and chemical-metallurgical production of metals, steels and alloys from natural and technogenic raw materials on plasma method basis. Such pollution-free complex allows reducing energy- and resource consumption. 15 Ref., 10 Figures.


Keywords: jet-plasma processes, dispersed powders, plasma-chemical installation, tungsten, energy- and resource saving, energy-technological complex, plasma-arc liquid-phase reduction of iron


Received:                11.07.13
Published:               06.11.13


References
1. Rykalin, N.N. (1947) Thermal principles of welding. Moscow: AN SSSR.
2. Rykalin, N.N. (1951) Calculations of thermal processes in welding. Moscow: Mashgiz.
3. Tsvetkov, Yu.V., Panfilov, S.A. (1980) Low-temperature plasma in reduction processes. Moscow: Nauka.
4. Tsvetkov, Yu.V. (1981) Ways of intensification of reduction processes in terms of adsorption catalytic representations. Physical chemistry of metal oxides. Moscow: Nauka.
5. Tsvetkov, Yu.V. (1985) Specifics of thermodynamics and kinetics of plasma-metallurgical processes. Moscow: Nauka.
6. Tsvetkov, Yu.V. (1999) Plasma metallurgy. Current state, problems and prospects. Pure and Applied Chemistry, 71(10), 1853-1862.
7. Tsvetkov, Yu.V., Nikolaev, A.V., Panfilov, S.A. (1992) Plasma metallurgy. Novosibirsk: Nauka.
8. Tsvetkov, Yu.V. (2006) Physical chemistry of plasma metallurgy. Tekhnologiya Metallov, 4, 7-14.
9. Kalamazov, R.U., Tsvetkov, Yu.V. (1988) Finely-dispersed powders of tungsten and molybdenum. Moscow: Metallurgiya.
10. Tsvetkov, Yu.V. (2006) Thermal plasma in nanotechnologies. Nauka v Rossii, 2, 4-9.
11. Samokhin, A.V., Alekseev, N.V., Tsvetkov, Yu.V. (2006) Plasma-chemical processes of development of nanodispersed powder materials. Khimiya Vysokikh Energij, 40(2), 120-126.
12. Tsvetkov, Yu.V., Samokhin, A.V. (2008) Plasma nanopowder metallurgy. The Paton Welding J., 11, 149-152.
13. Astashov, A.G., Samokhin, A.V., Tsvetkov, Yu.V. et al. (2012) Heat-and-mass transfer in plasma reactor with limited jet flow in producing of nanopowders. Khimiya Vysokikh Energij, 46(4), 327-330.
14. Tsvetkov, Yu.V., Nikolaev, A.V. (2006) Plasma processes in composition of power-metallurgical complex (some problems of metallurgy of future). Resursy. Tekhnologiya. Ekonomika, 2, 20-26; 3, 38-42.
15. Nikolaev, A.V., Kirpichyov, D.E., Nikolaev, A.A. et al. (2012) Energy efficient application of plasma furnace in reduction of titaniferous magnetite concentrate. Glavny Energetik, 3, 26-36.