Print

2014 №09 (01) DOI of Article
10.15407/tpwj2014.09.02
2014 №09 (03)


The Paton Welding Journal, 2014, #9, 17-24 pages  

SIMULATION OF ELECTRIC ARC WITH REFRACTORY CATHODE AND EVAPORATING ANODE

I.V. KRIKENT1, I.V. KRIVTSUN2 and V.F. DEMCHENKO2


1Dneprodzerzhinsk State Technical University. 2 Dneprostroevskaya Str., 51918, Dneprodzerzhinsk, Ukraine. E-mail: science@dstu.dp.ua
2E.O. Paton Electric Welding Institute, NASU. 11 Bozhenko Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua
 
 
Abstract
Equation of convective diffusion of ionized metal vapour in arc plasma, allowing for the difference in coefficients of diffusion of atoms, single- and double-charged metal ions, presence of thermodiffusion flows of metal particles, as well as ion drift in the electric field, was proposed to more precisely define the earlier developed complex model of the processes of energy, mass and charge transfer in the column and anode region of electric arc with refractory cathode and evaporating anode, running in inert gas. Based on the thus precised complex mathematical model, numerical analysis of the influence of diffusion-induced evaporation of anode material (Fe) on heat, gas-dynamic and electromagnetic characteristics of multicomponent plasma of the column and anode region of stationary electric arc with refractory cathode (W) at its running in inert gas (Ar) was performed. An essential influence of metal surface temperature distribution in the region of anode binding of the arc on distribution of temperature and electric current density in near-anode plasma, as well as on distributed and integral characteristics of its thermal impact on evaporating anode surface, is shown. 18 Ref., 12 Figures.
 
 
Keywords: electric arc, refractory cathode, evaporating anode, arc column, anode region, multicomponent plasma, metal vapour, diffusion, mathematical simulation
 
 
Received:                17.04.14
Published:                28.09.14
 
 
References
1. Murphy, Ant.B. (2010) The effects of metal vapour in arc welding. J. Phys. D: Appl. Phys., 43. https://doi.org/10.1088/0022-3727/43/43/434001
2. Hsu, K.C., Etemadi, K., Pfender, E. (1983) Study of the free-burning high-intensity argon arc. J. Appl. Phys., 54(3), 1293-1301. https://doi.org/10.1063/1.332195
3. Hsu, K.C., Pfender, E. (1983) Two-temperature modeling of the free-burning high-intensity arc. Ibid., 54(8), 4359-4366. https://doi.org/10.1063/1.332672
4. Engelsht, V.S., Gurovich, V.Ts., Desyatkov, G.A. et al. (1990) Low-temperature plasma. Vol. 1: Theory of electric arc column. Novosibirsk: Nauka.
5. Zhu, P., Lowke, J.J., Morrow, R. et al. (1995) Prediction of anode temperatures of free burning arcs. J. Phys. D: Appl. Phys., 28, 1369-1376. https://doi.org/10.1088/0022-3727/28/7/014
6. Jenista, J., Heberlein, J.V.R., Pfender, E. (1997) Numerical model of the anode region of high-current electric arcs. IEEE Transact. on Plasma Science, 25(5), 883-890. https://doi.org/10.1109/27.649585
7. Lowke, J.J., Morrow, R., Haidar, J. (1997) A simplified unified theory of arcs and their electrodes. J. Phys. D: Appl. Phys., 30, 2033-2042. https://doi.org/10.1088/0022-3727/30/14/011
8. Haidar, J. (1999) Non-equilibrium modeling of transferred arcs. Ibid., 32, 263-272.
9. Sansonnets, L., Haidar, J., Lowke, J.J. (2000) Prediction of properties of free burning arcs including effects of ambipolar diffusion. Ibid., 33, 148-157.
10. Nishiyama, H., Sawada, T., Takana, H. et al. (2006) Computational simulation of arc melting process with complex interactions. ISIJ Int., 46(5), 705-711. https://doi.org/10.2355/isijinternational.46.705
11. Lago, F., Gonzalez, J.J., Freton, P. et al. (2004) A numerical modeling of an electric arc and its interaction with the anode. Pt 1: The two-dimensional model. Ibid., 37, 883-897.
12. Tanaka, M., Yamamoto, K., Tashiro, S. et al. (2008) Metal vapour behaviour in gas tungsten arc thermal plasma during welding. Welding in the World, 52(11/12), 82-88. https://doi.org/10.1007/BF03266686
13. Mougenot, J., Gonzalez, J.J., Freton, P. et al. (2013) Plasma-weld pool interaction in tungsten inert-gas configuration. J. Phys. D: Appl. Phys., 46, 135-206. https://doi.org/10.1088/0022-3727/46/13/135206
14. Krivtsun, I.V., Demchenko, V.F., Krikent, I.V. (2010) Model of the processes of heat-, mass- and charge transfer in the anode region and column of the welding arc with refractory cathode. The Paton Welding J., 6, 2-9.
15. Almeida, R.M.S., Benilov, M.S., Naidis, G.V. (2000) Simulation of the layer of non-equilibrium ionization in a high-pressure argon plasma with multiply-charged ions. J. Phys. D: Appl. Phys., 33, 960-967. https://doi.org/10.1088/0022-3727/33/8/312
16. Krivtsun, I.V., Krikent, I.V., Demchenko, V.F. (2013) Modelling of dynamic characteristics of a pulsed arc with refractory cathode. The Paton Welding J., 7, 13-23.
17. Krikent, I.V., Krivtsun, I.V., Demchenko, V.F. (2012) Modelling of processes of heat-, mass- and electric transfer in column and anode region of arc with refractory cathode. Ibid., 3, 2-6.
18. Krivtsun, I.V., Porytsky, P., Demchenko, V. et al. (2010) On the application of the theory of Lorentzian plasma to calculation of transport properties of multicomponent arc plasmas. Europ. Phys. J. D, 57, 77-85. https://doi.org/10.1140/epjd/e2010-00012-1