

УДК 669.245.018.044:620.193.53

РАСЧЕТ ФАЗОВОГО СОСТАВА ЛИТЕЙНОГО ЖАРОПРОЧНОГО КОРРОЗИОННОСТОЙКОГО НИКЕЛЕВОГО СПЛАВА МЕТОДОМ CALPHAD

С.В. Гайдук¹, В.В. Кононов¹, В.В. Куренкова²

¹Запорожский национальный технический университет (ЗНТУ). 69063, г. Запорожье, ул. Жуковского, 64. E-mail: rector@zntu.edu.ua ²ООО «Патон Турбайн Текнолоджиз». 03028, г. Киев, ул. Ракетная, 26. E-mail: VKurenkova@patontt.com

С помощью компьютерного моделирования процесса кристаллизации, основанного на термодинамических расчетах CALPHAD-метода, рассчитан фазовый состав многокомпонентной никелевой системы Ni–14,5Cr–4,5Co–3,0Al–3,0Ti–6,5W–2,0Mo–2,5Ta–0,3Hf–0,015Zr–0,015B–0,10С. Результаты расчетов химического состава фаз приведены в сравнении с экспериментальными данными, полученными методом электронной микроскопии. Библиогр. 14, табл. 4, ил. 3.

Ключевые слова: литейные жаропрочные коррозионностойкие никелевые сплавы; система легирования; метод CALPHAD; структура; фазовый состав

По мере совершенствования системы легирования жаропрочных никелевых сплавов усложняется их микроструктура и изменяется фазовый состав. Кроме основных фаз: у-твердого раствора, упрочняющей высокодисперсной у'-фазы, выделяющейся из у-твердого раствора, и карбидов типа МС в структуре жаропрочного сплава могут присутствовать вторичные фазы, представляющие собой эвтектику $\gamma' + \gamma$, карбиды других типов ($M_{23}C_6$, Ме_сС), топологически плотноупакованные (ТПУ) (σ-фаза, μ-фаза, α-фаза и т. д.) и боридные фазы. Условия образования этих фаз в процессе кристаллизации, специфика их формирования, морфология и количество, а также зависимость химического состава от степени легирования сплава достойны внимания [1-5].

Целью настоящей работы является исследование структуры и фазового состава многокомпонентной системы Ni–14,5Cr–4,5Co–3,0Al–3,0Ti– 6,5W–2,0Mo–2,5Ta–0,3Hf–0,015Zr–0,015B–0,10С (сплав ЖСЗЛС-М, средний уровень легирования) с помощью компьютерного моделирования термодинамических процессов, основанных на расчетном методе CALPHAD, в сравнении с результатами прямого эксперимента, полученными методом электронной микроскопии.

С помощью компьютерного моделирования термодинамических процессов, основанного на

3/2015 -

расчетном методе CALPHAD, по исходному химическому составу сплава проводили прогнозирующие расчеты по наиболее вероятному выделению в структуре типа фаз и их количества, а также химического состава фаз после кристаллизации.

Состав фаз исследованного сплава определяли экспериментально на электронном микроскопе JEOL JSM-6360LA, оснащенном системой энергодисперсионного микрорентгеноспектрального анализа JED-2300. Морфология, качественный и количественный анализы структурных составляющих сплава ЖСЗЛС-М изучали с использованием микрозондового анализа сканированием локальной площади (точки) с обработкой данных в режиме картирования. Относительная погрешность количественного метода составляет ±0,1 мас. %.

Результаты расчета фазового состава литейного жаропрочного коррозионностойкого никелевого сплава сравнивали с экспериментальными данными структурного анализа.

Анализ результатов. Эффективность метода CALPHAD заключается в достоверных прогнозирующих расчетах, основанных на надежных физических принципах, а не чисто статистических методах, например, как регрессионный анализ. Данным подходом могут быть преодолены многие из недостатков статистических методов. В работе показано, что с помощью компьютерного моде-

Таблица 1. Расчетные значения типа и количества фаз в сплаве ЖСЗЛС-М после кристаллизации при 20 °С, мас. %								
γ	γ'	MC	M ₂₃ C ₆	M ₃ B ₂				
54,13	43,41	1,03	1,25	0,18				

лирования термодинамических процессов можно надежно прогнозировать фазовый состав и структуру в зависимости от химического состава конкретного сплава [6].

Результаты, полученные компьютерным моделированием процесса кристаллизации, позволяют с высокой степенью достоверности расчитать тип, количество, температуры выделения вторичных фаз, а также их химический состав в зависимости от системы легирования сплава [7–12].

Компьютерное моделирование процесса кристаллизации сплава осуществляли от температуры жидкого состояния 1400 °С до комнатной температуры 20 °С с температурным шагом 10 °С по всему диапазону, что позволило определить температурную последовательность выделения фаз в процессе кристаллизации. Показано, что основные фазы выделяются (кристаллизуются из расплава) в следующем порядке (температуры начала выделения): карбиды типа МС (*t*_{мс} ~1334 °C); γ -твердый раствор ($t_s \sim 1290$ °C); эвтектика γ' + + ү ($t_{\gamma'+\gamma} \sim 1210$ °C); интерметаллиды типа (Ni₃Al) γ' -фаза ($t_{\Pi p}^{\gamma'} \sim 1165$ °C); карбиды типа $M_{_{23}}C_6$ ($t_{_{M_{23}}C_6} \sim 1028$ °C). Результаты расчетов соответствуют экспериментальным данным, приведенным в работах [4, 13, 14].

Термодинамические расчеты показали, что вероятно выделение незначительного количества боридов типа M_3B_2 (1079 °C), а также некоторых метастабильных фаз: интерметаллида типа Ni₅M (560 °C); σ -фазы (534 °C); μ -фазы (414 °C). С термодинамической точки зрения выделение фаз данного типа возможно, но маловероятно, так как данные фазы выделяются из γ -твердого раствора при пониженных температурах в процессе длительного старения.

В таблице 1 приведены расчетные данные по типу и количеству фаз, которые выделяются в процессе кристаллизации и формируют структуру сплава ЖС3ЛС-М.

Результаты расчетов химического состава фаз после кристаллизации исследованного литейного жаропрочного коррозионностойкого никелевого сплава ЖСЗЛС-М отражены в табл. 2.

Анализ результатов показал, что сложнолегированный жаропрочный сплав представляет собой гетерофазную систему. Основой сплава является γ -твердый раствор на основе никеля (63,48 %) с ГЦК решеткой, который также содержит хром (20,35 %), кобальт (4,54 %) и вольфрам (7,64 %). Данные компоненты обеспечивают твердорастворное упрочнение матрицы и находятся в большем количестве, чем в упрочняющей γ' -фазе. Так содержание хрома в 1,5 раза выше, чем его содержание в исходном среднем составе сплава (14,5 %). Также в твердом растворе находится небольшое количество молибдена (1,41 %) и тантала (2,58 %).

Расчет элементов в основной упрочняющей γ' -фазе Ni₃Al показал, что содержание алюминия (5,83 %) и титана (6,91 %) — основных γ' -образующих элементов почти в 2 раза выше, чем их содержание в исходном составе сплава (~3,0 %). В состав γ' -фазы входит тантал (5,76 %), содержание которого более чем в 2 раза превышает его среднее содержание в сплаве (2,5 %). Наряду с незначительным количеством кобальта (1,67 %), в состав γ' -фазы входит в исходном сплаве (6,5 %) среднего уровня легирования.

Расчеты состава карбидов типа МС показали, что их основой являются тантал (49,85 %), титан (29,30 %) и гафний (11,47 %) (при содержании последнего в сплаве – 0,3 %) (табл. 2). Данные карбидные фазы достаточно стабильные структурные составляющие и обеспечивают прочностные характеристики жаропрочного сплава.

Основой карбидов $M_{23}C_6$ (по расчетам) является хром (71,75 %), что свидетельствует о его вы-

Таблица 2. Химический состав фаз для сплава ЖСЗЛС-М после кристаллизации при 20 °С, мас. %											
Фаза	Ni	Cr	Al	Со	Mo	Та	Ti	W	Hf	С	B/Zr
γ	63,48	20,35	-	4,54	1,41	2,58	-	7,64	-	-	_/_
γ́	72,44	2,87	5,83	1,67	0,41	5,76	6,91	4,11	-	_	_/_
$\gamma_{_{\mathcal{P}BT}}^{'}$	—	-	_	_	-	_	-	_	-	-	_/_
MC	-	_	-	_	-	49,85	29,30	-	11,47	9,38	_/_
$M_{23}C_{6}$	-	71,75	-	_	14,50	-	-	8,60	-	5,15	_/_
M ₃ B ₂	_	19,59	-	-	72,27	-	-	-	-	—	8,14/-

Рис. 1. Микроструктура литого сплава ЖСЗЛС-М: $a = 001 = (\gamma + \gamma')$ -структура сплава; 002, 003 — пограничная γ' -фаза; $\delta = 005 = (\gamma + \gamma')$ -структура сплава; 006 — карбидная фаза типа МС; 007 — карбидная фаза типа М₂₃С₆; 009 — пограничная γ' -фаза

Таблица З. Результ ЖСЗЛС-М после крист	гаты микрорентгеноспе галлизации при 20 °C, м	ектрального анализа ти мас. %	па и количества фаз в	структуре литого сплава
		140	N. G	MAR

γ	γ´	MC	M ₂₃ C ₆	M_3B_2
55,354,1	42,543,5	0,951,05	1,251,30	Не выявлено

сокой карбидообразующей способности. Одновременно с хромом в составе карбидов данного типа присутствуют молибден (14,5%) и вольфрам (8,60%). Термодинамические расчеты показали, что в состав боридов типа M_3B_2 может входить хром (19,59%) и молибден (72,27%).

Расчет состава эвтектики $\gamma' + \gamma$ затруднен, так как при кристаллизации эвтектических выделений у легирующих элементов нестабильны величины коэффициентов ликвации. Поэтому данные расчетов должны дополняться результатами, полученными экспериментально.

Результаты расчета фазового состава, полученные методом CALPHAD, сравнивались с результатами прямого эксперимента, полученными при помощи электронной микроскопии.

На рис. 1 представлена микроструктура исследованного образца сплава ЖСЗЛС-М среднего уровня легирования в литом состоянии и результаты микрорентгеноспектрального анализа (МРСА) фаз, которые позволили идентифицировать фазы по химическому составу (табл. 3, 4). Из рис. 1 видно, что выделения по границам зерен представляют собой эвтектическую ү'-фазу (пограничную), которая обогащена ү'-образующими элементами и представляет собой более крупные частицы.

В процессе охлаждения из γ -твердого раствора выделяются мелкодисперсные упрочняющие частицы γ' -фазы размером 200 Å = 0,200 мкм, которые значительно мельче, чем первичная γ' -фаза (10000 Å = 10 мкм). Упрочняющая вторичная фаза регулярно распределяется в матричном растворе по осям дендритов, а эвтектическая γ' -фаза — преимущественно в междендритных областях и по границам зерен.

Металлографическими исследованиями показано, что в структуре сплава в литом состоянии присутствует первичная γ' -фаза, выделяющаяся из жидкости (расплава). Данные выделения располагаются по границам зерен и имеют несколько отличающийся химический состав от основной упрочняющей γ' -фазы. По сравнению с дисперсной γ' -фазой эвтектические первичные выделения

Таблица 4. Химический состав фаз литого сплава ЖСЗЛС-М после крист	аллизации, полученный эксперимен-
тально, мас.%	

Фаза	Ni	Cr	Al	Со	Mo	Та	Ti	W	Hf	C	B/Zr
γ	63,54	20,40	-	4,16	1,48	2,89	-	7,53	-	-	-
γ́	73,37	2,93	5,34	1,59	0,46	5,89	6,13	4,29	-	-	_/_
$\gamma_{_{\operatorname{\mathfrak{SBT}}}}$	77,12	-	6,67	2,77	0,64	6,95	5,85	_	_	_	_/_
MC	_	-	_	-	-	50,45	31,62	-	8,81	9,12	_/_
$M_{23}C_{6}$	—	71,92	-	—	13,74	-	-	9,21	—	5,13	_/_
M_3B_2	_	_	-	-	-	-	-	-	_	_	_/_

Г

Рис. 2. Результаты МРСА в режиме картирования фрагмента закристаллизовавшегося сплава ЖСЗЛС-М: *а* — микроструктура литого сплава; *б*–з — распределение компонентов по площади фрагмента сплава

обогащены элементами, коэффициент ликвации которых положителен (Ti, Ta, Hf) и обеднены элементами, коэффициент ликвации которых отрицателен (W) (табл. 4).

Состав карбидов типа МеС, определенный экспериментально, хорошо согласуется с результатами расчетов, проведенных методом CALPHAD. Установлено, что в состав карбидов МС входят тантал и титан в количестве 50,45 и 31,62 %, а по расчету 49,85 и 29,30 % соответственно. Следует отметить, что определенное содержание в составе карбидов МС гафния (8,81 %) несколько отличает-

ОБЩИЕ ВОПРОСЫ МЕТАЛЛУРГИИ

Рис. 3. Результаты МРСА в режиме картирования зоны тройной границы сплава ЖСЗЛС-М: *а* — микроструктура литого сплава; *б*–з — распределение компонентов по площади тройной границы

ся от расчетного (11,47 %) ввиду его малого содержания в сплаве (0,3 %) (табл. 2, 4, рис. 2).

Данные, полученные методом электронной микроскопии, показали, что в состав карбидов типа $M_{23}C_6$ входит в основном хром (71,92 %), что хорошо согласуется с результатами расчетов (71,75 %). 3/2015 Наряду с хромом в карбидах присутствуют молибден (13,74 %) и вольфрам (9,21 %), по расчету — 14,50 и 8,60 % соответственно (табл. 2, 4). Карбидные частицы (Cr, W, Mo)₂₃C₆ располагаются по границам зерен наряду с эвтектическими выделениями γ' (рис. 3).

Следует отметить, что после кристаллизации выделения боридной фазы типа M_3B_2 , а также метастабильных избыточных фаз типа σ -, μ -, Ni_5M не обнаружено. Данные фазы обычно выделяются при длительном старении и температурах ниже 800 °C.

Таким образом, сравнительные результаты, полученные методом CALPHAD, по определению типа, количества и химического состава фаз, показали хорошую сходимость с экспериментальными данными, полученными методом электронной микроскопии.

Выводы

1. Метод компьютерного моделирования термодинамических процессов при кристаллизации показал высокую достоверность и хорошую согласованность результатов с экспериментальными данными, что позволяет надежно прогнозировать фазовый состав и структуру в зависимости от химического состава сплава, т.е. системы легирования.

2. В сплаве ЖС3ЛС-М системы Ni–14,5Сг– 4,5Со–3,0Аl–3,0Тi–6,5W–2,0Мо–2,5Та–0,3Hf– 0,015Zr–0,015В–0,10С выделение основных фаз при кристаллизации происходит в следующем порядке: карбиды МС ($t_{\rm MC} \sim 1334$ °C); γ -твердый раствор ($t_{\rm S} \sim 1290$ °C); эвтектика $\gamma' + \gamma$ ($t_{\gamma'+\gamma} \sim ~ 240$ °C); интерметаллидная (Ni₃Al) γ' -фаза ($t^{\gamma'} \sim ~ 1100$ °C); карбиды М₂₃С₆ ($t_{\rm M_{23}C_6} \sim 1028$ °C).

3. Основой карбидов МС я́вля́ются тантал, титан и гафний. Карбиды типа $M_{23}C_6$ формируются на основе хрома, молибдена и вольфрама. Температура выделения карбидов типа $M_{23}C_6$ почти на 300 °С ниже, чем карбидов типа МС, что свидетельствует о более высокой термодинамической стабильности последних.

 Каблов Е.Н. Литейные жаропрочные сплавы. Эффект С.Т. Кишкина: науч.-техн. сб.: к 100-летию со дня рождения С.Т. Кишкина. — М.: Наука, 2006. — 272 с.

- Кишкин С.Т., Строганов Г.Б., Логунов А.В. Литейные жаропрочные сплавы на никелевой основе. — М.: Машиностроение, 1987. — 116 с.
- Жаропрочность литейных никелевых сплавов и защита их от окисления / Б.Е. Патон, Г.Б. Строганов, С.Т. Кишкин и др. — Киев: Наук. думка, 1987. – 256 с.
- Каблов Е.Н. Литые лопатки газотурбинных двигателей (сплавы, технология, покрытия). — М.: МИСИС, 2001. — 632 с.
- 5. Симс Ч.Т., Столофф Н.С., Хагель У.К. Суперсплавы II. Жаропрочные материалы для аэрокосмических и промышленных энергоустановок. М.: Металлургия, 1995. 384 с.
- Saunders N., Fahrmann M., Small C.J. The Application of CALPHAD Calculations to Ni-Based Superalloys // In «Superalloys 2000». — TMS. — Warrendale, 2000. — P. 803.
- 7. Попов В.В., Горбачев И.И. Анализ растворимости карбидов, нитридов и карбонитридов в сталях методами компьютерной термодинамики. І. Описание термодинамических свойств. Метод расчета // Физика металлов и металловедение. — 2004. — Т. 98. — № 4. — С. 11–21.
- Попов В.В., Горбачев И.И. Анализ растворимости карбидов, нитридов и карбонитридов в сталях методами компьютерной термодинамики. II. Растворимость карбидов, нитридов и карбонитридов в системах Fe–V–C, Fe–V–N и Fe–V–C–N // Там же. — 2005. — Т. 99. — № 3. — С. 69–82.
- 9. Горбачев И.И., Попов В.В. Анализ растворимости карбидов, нитридов и карбонитридов в сталях методами компьютерной термодинамики. III. Растворимость карбидов, нитридов и карбонитридов в системах Fe-Ti-C, Fe-Ti-N и Fe-Ti-C-N // Там же. — 2009. — Т. 108. — № 5. — C. 1–12.
- 10. Горбачев И.И., Попов В.В. Термодинамическое моделирование системы Fe–V–Nb–C–N на основе CALPHAD-метода // Там же. 2011. Т. 111. № 5. С. 518–525.
- 11. Горбачев И.И., Попов В.В., Пасынков А.Ю. Термодинамическое моделирование карбонитридообразования в сталях C–V–N–Ti // Там же. 2012. Т. 113. № 10. С. 1226–1035.
- Пигрова Г.Д., Рыбников А.И. Карбидные фазы в многокомпонентном суперсплаве на основе Ni-Co-W-Cr-Ta-Re // Там же. — 2013. — Т. 114. — № 7. — С. 647-650.
- Вертоградский В.А., Рыкова Т.П. Исследование фазовых превращений в сплавах типа ЖС методом ДТА // Жаропрочные и жаростойкие стали и сплавы на никелевой основе. — М.: Наука, 1984. — С. 223–227.
- 14. *Fippen J.S., Sparks P.B.* Using differential thermal analysis to determine phase change temperatures // Metal Progr. 1979. № 4. P. 56–59.

Using computer modeling of the crystallization process, based on thermodynamic calculations of CALPHAD-method, the phase composition of multicomponent nickel system Ni–14.5Cr–4.5Co–3.0Al–3.0Ti–6.5W–2.0Mo–2.5Ta–0.3Hf–0.015Zr–0.015B–0.10C was calculated. The results of calculations of chemical composition of phases are given in comparison with experimental data, obtained by the method of electron microscopy. 14 Ref., 4 Tables, 3 Figure.

Key words: castable high-temperature corrosion-resistant nickel alloys; alloying system; CALPHAD method; structure; phase composition

Поступила 30.06.2015