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Проаналізовано методи зниження швидкості корозії футеровки шляхом контролю температурного режиму. По-
казано, що вибір правильної комбінації прошарків вогнетривких матеріалів дозволяє суттєво знизити швид-
кість корозії футеровки при взаємодії з рідким металом, але одночасно збільшує втрати енергії тепла через кон-
векційний і радіаційний теплообмін. Запропоновано відповідний алгоритм для досягнення кращого рішення 
шляхом оптимізації висоти і складу шарів футеровки. Бібліогр. 9, табл. 2, рис. 1.
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Вступ. Середньо- і низьковуглецевий феромар-
ганець виробляють силікотермічним процесом у 
рудовідновлювальних електропечах шляхом від-
новлення марганцю з низькофосфористих шлаків 
феросилікомарганцем за трьохстадійною схемою: 
дефосфорація марганцевого концентрату; виплав-
ка переробного силікомарганцю; виплавка феро-
марганцю або металевого марганцю [1–3]. Згідно 
стандарту України (ДСТУ 3547–97), феромарга-
нець залежно від марки має у складі 85…95 % Mn, 
<0,2 або <2,0 % C, <1,8 або < 3,0 % Si, <0,07 або 
<0,40 % Р. Електропечі для виплавки такого фе-
ромарганцю (рисунок) мають магнезитову футе-
ровку, від якої очікується достатньо довготривала 
стійкість проти корозії розтопленим феросплавом 
Mn–Si–Fe і шлаком MnO–SiO2–CaO [1–4]. Коро-
зія і руйнування магнезитової футеровки можуть 
бути вельми значними, якщо у шлаку є підвище-
ний вміст лужних металів (Na2O + K2O). Ці додат-
ки застосовуються у процесі з метою зниження 
в’язкості шлаку, особливо при низьких температу-
рах, але їх негативний ефект на стійкість футеров-
ки може бути значно більший, ніж очікувана пере-
вага за рахунок регулювання в’язкості шлаку [5].

Підвищення стійкості футеровки може бути вирі-
шено шляхом зміни її складу (заміна вогнетривких 
матеріалів іншими), що змінює загальний тепловий 
опір теплоізолюючого шару залежно від комбінації 
теплопровідності та геометрії прошарків.

В роботі [6] була розрахована температура 
вздовж центральної осі печі та показана потен-
ційна можливість зменшення швидкості корозії 
футеровки розтопленим металом. Розподіл тем-
ператури було оцінено для щільної магнезитової 
футеровки і при заміни частки нижнього шару на 
магнезійно-вуглецеву цеглу з більш високою те-

плопровідністю. Ідея полягала в зменшенні тем-
ператури верхнього шару до її рівня близько тем-
ператури ліквідус феросплаву відомого складу і 
відповідно до уповільнення кінетики реакції ком-
понентів металу з магнезитом. Наведені у роботі 
[6] кінцеві результати стверджують потенційну 
можливість підвищення стійкості футеровки май-
же у 5 разів, але за рахунок більших втрат тепла. 
Істотним недоліком цих розрахунків є неузгодже-
ність параметрів. Там не було наведено конкрет-
них даних стосовно теплового потоку, а значення 
параметрів різняться між текстом і рисунками. 
Наші спроби відтворити ці результати, використо-
вуючи такі ж самі склад і геометрію футеровки 
для таких граничних умов, не були успішними. 
З метою перевірки цих розрахунків і розробки 
обгрунтованої концепції футеровки печі в цьому 
дослідженні проаналізовано недоліки методу [6] 
і запропоновано алгоритм оцінки теплових пара-
метрів футеровки печі для виплавки середньо- і 
низьковуглецевого феромарганцю.

Модель печі і відповідність параметрів. Пер-
ша модель електропечі для виплавки середньовуг-
лецевого феромарганцю була взята з роботи [6] з 
параметрами (табл. 1), до яких додано основні зна-
чення властивостей вогнетривких матеріалів [3, 7, 
8]. Інші параметри були такими ж, як і в роботі [6], 
крім тих (одних і тих же матеріалів або температу-
ри), які відрізнялись між собою. Деякі з наведених 
значень були оптимізовані у роботі [6], але без по-
яснень, яким саме чином це було зроблено, що не 
дозволяє перевірити розрахунки належним чином.

Для обгрунтування головних змінних пара-
метрів теплового режиму печі було проведено 
додатковий аналіз. Коефіцієнт теплопередачі ко-
жух–повітря αК враховано як функцію температу-
ри кожуха αК = 7,7743 + 0,0061·tK, включаючи на-
туральний конвекційний і радіаційний теплообмін 
[8]. Загальне рівняння теплопередачі Фурьє від 
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металу до навколишнього середовища (повітря) 
має вигляд:
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де q — загальний тепловий потік через футеров-
ку вздовж центральної осі; tM і t0 температури 
металу і навколишнього повітря (~30 °С) відпо-

відно; αМ і αК  — коефіцієнти теплопередачі від 
металу до футеровки і від кожуха до повітря 
відповідно; Rth — загальний тепловий опір футе-
ровки; Hi — висота кожного прошарку футеров-
ки; λi — теплопровідність матеріалу прошарку. 
Для перевірки результатів [6] можна оцінити 
загальний тепловий потік (1) за даними табл. 1: 
q  =  (tM  – tN)·αМ  = (1350–1262)·18  =  1584 Вт/м2, 
який є константою при стаціонарній роботі печі. 

Типова піч для виплавки феромарганцю силікотермічним процесом [1, 3, 4]

Таблиця 1. Параметри печі і футеровки

Показник Робота [6]* Дані [3, 7, 8] і цієї роботи

Теплопровідність матеріалів, Вт/м·К: 
магнезит-вуглецева цегла 
спечений магнезит 
спечений доломіт 
шамотна цегла

 
25 

5 (рис. 4), 10, 11 (текст) 
– 
–

 
25 
10 
5,8 
1,2

Температура по центральній осі печі, °С: 
зовнішній кожух (tK) 
футеровка у контакті з металом (tN) 

розплав металу (tM) 
ліквідус металу (80 % Mn, 0,80 % Si)

 
196 (рис. 3), 150 (текст) 

1262 (рис. 3) 
1350 
1180

 
Змінна 

‒»‒ 
1350 
1180

Інші параметри, Вт/м2∙K: 
теплопередача метал–футеровка (αМ) 
теплопередача кожух–повітря (αК)

 
18 
–

 
Залежить від числа Нуссельта 

Залежить від температури

*У роботі [6] для одних і тих же параметрів наведені різні дані на рисунках і у тексті.
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Однак за даними роботи [6] для висоти магне-
зиту Н  =  0,585  м при його теплопровідності 
λ  =  10  Вт/м∙К тепловий потік (1) має дорівню-
вати q = (tN – tК)/(Н/λ) = (1262 – 196)/(0,585/10)  = 
= 18220 Вт/м2, тобто майже у 10 разів вище, ніж 
величина, яка базується на αМ = 18 Вт/м2∙К. Якщо 
значення q = 18220 Вт/м2 вважати вірним, тоді кое-
фіцієнт теплопередачі між металом і футеровкою 
αМ має дорівнювати ~207, а не 18 Вт/м2∙К. При 
такому високому тепловому потоці та температу-
рі кожуха tК = 196 °С коефіцієнт теплопередачі αК 
має дорівнювати ~103 Вт/м2∙К, що неможливо у 
випадку натуральної конвекції і радіації [8]. Для 
меншого теплового потоку 1584 Вт/м2 тепловий 
опір магнезиту має становити (1262…196)/1584 = 
=  0,673  м2∙К/Вт, що при висоті шару магнезиту 
Н  =  0,585 м [6] відповідає його ефективній те-
плопровідності λ = 0,585/0,673 = 0,87 Вт/м∙К. Це 
значно менше, ніж наведені в роботі [6] значення 
5 і 10…11 Вт/м∙К, і менше, ніж дані довідника 
[8] у 4…5 Вт/м∙К. Прийнявши теплопровідність 
магнезиту λ ~ 5 Вт/м·К, це призводить до нефі-
зичних значень коефіцієнтів теплообміну і наба-
гато вищої температури кожуха для такої ж гео-
метрії футеровки. Таким чином, дані роботи [6] 
є неузгодженими та унеможливлюють коректну 
оцінку теплового режиму футеровки печі.

Розрахунок температурного режиму. Для от-
римання коректних значень теплового режиму печі 
в даній роботі були насамперед взяті параметри, 
значення яких не викликають сумнівів: температу-
ра металу, геометрія футеровки та теплопровідність 
вогнетривких матеріалів (табл. 1). Тепловий потік 
має бути самоузгодженим із відомими коефіцієн-
тами теплопередачі, тому при тепловому потоці 
~ 1584 Вт/м2, показаному вище, коефіцієнт тепло-
передачі від кожуха печі до навколишнього сере-
довища αК складатиме ~ 9,54 Вт/м2·К, що ближче 
до 8,97 Вт/м2·К (при tK = 196 °С) для натуральної 
конвекції з радіаційною складовою за даними ро-
боти [8]. У цьому випадку коефіцієнт теплопере-
дачі від металу до футеровки αМ дійсно ближче до 
18 ніж до 207 Вт/м2·К. Однак при αК ~ 10 Вт/м2·К 
і αМ ~ 18 Вт/м2·К неможливо отримати такі ж самі 
температури, які наведені у роботі [6], якщо част-
ку футеровки магнезиту (λ = 5 Вт/м·К) замінити на 
магнезійно-вуглецеву (λ = 25 Вт/м·К). Це призво-
дить або до нефізичних значень теплового потоку і 
коефіцієнтів теплопередачі, або температур.

Таким чином, коректний метод розрахунку 
властивостей і структури футеровки має базуватися 
на самоузгоджених початкових умовах (температу-
ри металу і кожуха, теплопровідність вогнетривких 
матеріалів, коректні коефіцієнти теплопередачі). Ко-

ефіцієнти теплопередачі можуть бути змінені, якщо 
вільна поверхня кожуха піддається примусовій кон-
векції стислим повітрям або водою.

Оцінка корозійної стійкості футеровки. Ві-
домо, що стійкість щільної футеровки в контакті 
з розтопленим металом можна оцінити через її 
хімічну деградацію, оскільки вклад інфільтра-
ційної складової набагато менший. Для пористої 
футеровки ситуація може бути оберненою, де ін-
фільтрація рідким металом досягає нижчих гори-
зонтів [3, 6, 9]. Використовуючи метод, аналогіч-
ний прийнятому в роботі [6], швидкість хімічної 
деградації футеровки (v, см/год) при її контакті з 
середньовуглецевим феромарганцем може бути 
оцінена наступним чином:

	

1/2 1/3 1000,332Re ,%
Me

MgO

Sc iD
v L x

ρ   =      ρ    	
(2)

де Re — число Рейнольдса [6, 8] для руху (конвек-
ції) металу біля подини; Sc — число Шмідта [6, 8]; 
Di — коефіцієнт дифузії активних компонентів ме-
талу (у цьому випадку здебільшого для кремнію); 
L — характеристична довжина печі; ρMe — густина 
металу при температурі tM; ρMgO — густина футеров-
ки (магнезиту); % x — фракція магнезиту, яка може 
розчинитися металом (прийнято у 5 %). Вибравши 
значення параметрів, можна оцінити, що очікува-
на швидкість корозії магнезиту (2) при tN = 1262 °С 
(температура в нижній точці подини у контакті з 
металом) складе ~ 0,275 см/год при 0,80 % Si у фе-
ромарганці. Істотне зменшення корозії може бути 
досягнуто зниженням контактної температури ме-
талу до лінії ліквідус (~ 1180 °С для феромарганцю 
85 % Mn, 1 % С, 0,80 % Si), коли дифузійні процеси 
і кінетика реакцій сповільнюються.

Задача полягає у знаходженні такої комбінації 
прошарків вогнетривких матеріалів, яка забезпе-
чила б температуру найвищого шару магнезиту 
1180  °С, коли корозія футеровки за розрахунком 
складатиме ~ 0,20 см/год (приблизно на 30 % мен-
ше) при інших ідентичних умовах. Це можна досяг-
нути двома зонами футеровки із шамоту і магнези-
ту/доломіту (табл. 2). При температурі футеровки 
1180 °С і металу 1350 °С очікуваний тепловий по-
тік складатиме (1350 – 1180)·18 = 3060 Вт/м2, що 
у ~ 2 рази вище, ніж у початковому випадку для 
температури tN = 1262 °С (табл. 1), але у ~ 5 ра-
зів менше, ніж з футеровкою із магнезійно-вугле-
цевого матеріалу згідно з даними роботи [6]. Ре-
зультати розрахунків показано у табл. 2 (потрібно 
зауважити, що для печі (рисунок) загальна висота 
футеровки більша, ніж у роботі [6]).
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Таким чином, можна констатувати, що резуль-
тати роботи [6] незбалансовані і мають відмін-
ності між даними на рисунках і у тексті. Заміна 
вогнетривкого матеріалу на інший з більш висо-
кою теплопровідністю (у 3…5 разів) ніяк не може 
призвести до більш низької температури кожуха 
при підвищеному тепловому потоці. Можливо, що 
у експериментах роботи [6] для печі використову-
вали інтенсивне примусове охолодження кожуха, 
але цього не було показано явним чином.

Загальний алгоритм оптимізації футеровки 
може бути використано досить простим чином: 
температура верхнього шару футеровки має під-
тримуватися близькою до температури ліквідус 
металу, що дозволить сповільнити швидкість ко-
розійних процесів, незалежно від їх механізмів 
[6,  9]. Виходячи з відомих температури металу, 
його температури ліквідус і коефіцієнтів теплопе-
редачі, спочатку оцінюється загальний тепловий 
потік через футеровку і відповідні йому тепловий 
опір і температура кожуха, далі підраховується 
комбінація прошарків вогнетривких матеріалів, 
яка буде оптимальна для цих умов. Якщо темпе-
ратура кожуха буде вище оптимальної, можна за-
лучити примусове охолодження і оцінити можли-
вість ефективної утилізації теплових втрат.

Висновки

1. Тепловий режим печі для виробництва феро-
марганцю є важливим не тільки для процесу плав-
ки, а і для стабільності футеровки. Корозія магне-
зитової футеровки залежить від вмісту кремнію 
у феромарганці, температури і конвекції металу, 
геометрії і складу футеровки.

2. Аналіз показав, що дані роботи [6] щодо 
теплового режиму роботи футеровки мають не-
узгодженість між величинами теплового потоку, 
коефіцієнтами теплопередачі і граничними темпе-
ратурами. Нові розрахунки в даній роботі показа-

ли, що заміна шарів футеровки на інші з більшою 
теплопровідністю має бути виваженою, щоб за-
побігти високій температурі кожуха і можливому 
замерзанню металу.

3. Запропоновано зручний алгоритм оптиміза-
ції висоти прошарків і складу вогнетривких мате-
ріалів футеровки з метою зменшення швидкості 
корозії шляхом підтримування температури верх-
нього шару футеровки близькою до температури 
ліквідус металу конкретного складу.
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Таблиця 2. Параметри футеровки за різними варіантами

Показник Робота [6] Дані цієї роботи

Висота прошарків матеріалів, м: 
спечений магнезит 
спечений доломіт 
магнезійно-вуглецева цегла 
шамотна цегла

 
0,585 

– 
– 
–

 
0,285 

– 
0,30 

–

 
0,983 

– 
– 

0,067

 
– 

0,906 
– 

0,144

Температура по центральній осі печі, °С: 
зовнішній кожух (tK) 
футеровка у контакті з металом (tN)

 
196 
1262

 
950* 

1180

 
340 
1180

*Розраховано через рівняння теплопередачі (1); в роботі [6] показано 150 °С.
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The methods of decreasing the lining corrosion rate by controlling the temperature regime are analyzed. It is shown 
that selection of a proper combination of refractory material layers would allow a noticeable decrease of the lining 
corrosion rate at interaction with liquid metal, but this also would increase heat losses due to convective and radiation 
heat transfer. A proper algorithm is suggested to reach the optimal solution by optimization of the lining layer thickness 
and composition. 9 Ref., 2 Tabl., 1 Fig.
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ПЕРЕДБАЧЕННЯ ТЕМПЕРАТУРИ ПЛАВЛЕННЯ МАТЕРІАЛІВ
Костя Траченко, який здобув ступінь 
доктора наук у Кембриджському уні-
верситеті та магістра у Львівському, 
розробив нову теорію, яка вирішує 
давню проблему фізики — передба-
чення температури плавлення ма-
теріалів. Його дослідження, опублі-
коване в журналі Physical Review E, 
є значущим кроком у розумінні фун-
даментальних властивостей матерії 
і фазових переходів. Протягом десятиліть учені стикалися з проблемою відсутності універсального опису лінії 
плавлення на фазових діаграмах температура-тиск. Але тепер теорія професора Траченка, заснована на остан-

ніх досягненнях у теорії рідин, пропонує просте параболічне рівняння для опису 
цієї лінії. Це означає, що температуру плавлення можна передбачити з викорис-
танням фундаментальних фізичних констант. «Простота й універсальність цього 
результату особливо цікаві», — пояснює професор Траченко. «Це передбачає, що 
плавлення, незважаючи на його складність, демонструє фундаментальну єдність 
різних систем, від благородних газів до металів». Робота Траченка отримала 10 
найкращих нагород за прорив у фізиці та премію EPSRC-CCP за «видатний внесок 
у теорію і моделювання фаз конденсованої речовини, включно з теорією рідкого 
стану».
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