НЕСУЩАЯ СПОСОБНОСТЬ ОБЕЧАЕК СОСУДОВ С МЕСТНЫМИ УТОНЕНИЯМИ СТЕНОК

В. М. ДОЛИНСКИЙ, В. И. ЧЕРЕМСКАЯ

На основе теории предельного равновесия рассмотрена несущая способность обечаек с локальными утонениями стенок. Приведены зависимости, которые в определенной области параметров согласуются с ранее полученными рекомендациями инструкции B31G-1991 ASME. Даны примеры оценки работоспособности промышленных сосудов с местными повреждениями стенки.

Load-carrying capacity of shells with local wall thinning is considered on the basis of the theory of limit equilibrium. Simple dependencies are given, which in a certain parameter range agree with earlier specified recommendations of B31G-1991 ASME Guidelines. Examples of evaluation of performance of industrial vessels with local wall damage are given.

Местные утонения стенки сосуда, работающего под давлением, связаны с коррозионно-эрозионными повреждениями, а также наличием несплошностей, расслоением металла, механическими повреждениями и другими дефектами проката. Если толщина стенки в ослабленной зоне меньше расчетной толщины S_p , а линейные размеры зоны утонения выходят за пределы окружности, диаметр d_{op} которой не требует укрепления [1, 2], то выполняют ремонт сосуда в ослабленной зоне.

Однако существуют методики оценки работоспособности трубопроводов, размер зоны коррозионного износа которых значительно превышает $d_{\rm op}$ [3, 4]. В методике ASME рассматривается схема бесконечной оболочки с зоной утонения длиной 2*l*, глубиной *h* (рис. 1) с параметром оболочки $\gamma = a/S_{\rm p}$.

Методика ASME основана на обработке экспериментов, выполненных более чем на 250 фрагментах трубопроводов, изготовленных из углеродистой стали (аналоги — сталь Ст3 и сталь 20) и низколегированной стали (аналоги — стали 09Г2С и 16ГС) с локальными утонениями стенки. Указанные модели подвергали нагружению внутреним давлением и доводили до разрушения. В результате удалось получить эмпирическую зависимость (рис. 2), представленную кривой 2 и двумя отрезками прямых, ограничивающими область допустимых параметров повреждения:

$$\lambda = l / \sqrt{DS_{\rm p}}, \quad \theta = h / S_{\rm p}, \tag{1}$$

где *D* — внутренний диаметр сосуда; θ — глубина повреждения.

На рис. 2 также показаны прямая 1, соответствующая диаметру отверстия, не требующего укрепления; кривая 4 допустимого утонения стенки при установке кольцевых ребер [1] и кривая 3 [4], построенная на предположении о возможности

© В. М. Долинский, В. И. Черемская, 2009

аппроксимации зоны коррозионного повреждения конусом, объем которого равен объему цилиндра, не требующего укрепления. По-видимому, указанное допущение маловероятно, что привело к необоснованному увеличению зоны допустимых параметров повреждения.

Можно полагать, что методика ASME достаточно обоснована большим объемом экспериментальных данных. В то же время существуют два обстоятельства, сдерживающие ее распространение на расчет обечаек сосудов. Во-первых, эксперименты проводили на трубах с параметром оболочки $4,6 \le \gamma \le 74$. Для промышленных сосудов указанный параметр обычно находится в пределах $10 \le \gamma \le 500$. Во-вторых, в методике ASME не указано значение угла α , а лишь сказано, что зона повреждения обычно вытянута вдоль образующей. В ряде случаев при избирательной коррозии

Рис. 1. Схема бесконечной оболочки с ослабленным участком 2*l*

Рис. 2. Предельные зависимости $\lambda(\theta)$: $1 - \lambda = 0,2$ [2]; $2 - \lambda = 0,56\sqrt{\left[\theta/(1,1\theta - 0,15)\right]^2 - 1}$ [3]; $3 - \lambda = 0,4/\theta$ [4]; $4 - \lambda = 0,5\sqrt{(1 - 2\theta)/\theta}$ [1]

угол охвата поврежденной зоны может быть значительным, вплоть до 2π . В этом случае согласно [1] глубина повреждения θ не должна превышать 0,5, тогда как в рассматриваемой методике ASME она достигает значения 0,8 (рис. 2, кривая 4). Указанные обстоятельства потребовали проведения теоретических исследований с оценкой указанных факторов. Исследования основаны на методе предельного равновесия для осевых сил и на методе «запредельного» (с учетом геометрической нелинейности) равновесия для окружных сил.

Допустимая зона повреждений в окружном направлении α (рис. 1) определяется из условия предельного равновесия поврежденного сечения при изгибе и растяжении под действием осевых сил:

$$N = q\pi a^2; M = Nz, \tag{2}$$

где *z* — положение центра тяжести сечения,

$$z = \frac{2a\theta}{2\pi - \alpha\theta} \sin\frac{\alpha}{2}.$$
 (3)

Условие предельного равновесия [5] сводится к уравнению

Рис. 3. Диаграмма оценки работоспособности сосудов с повреждением стенки (*I*–*VI* — точки, соответствующие параметрам повреждения стенки объекта): *I* — реактор Р-4А (ОПЗ); *II* — ресивер аммиака D-4C (ОПЗ); *III* — трубопровод, линия 9-3 производства аммиака № 1 (ОПЗ); *IV* — сепаратор C-404 (Укртатнафта); *V* — ректификационная колонна К-16 (Укртатнафта); *VI* — холодильник X-401 (Укртатнафта). *I* допускаемый угол повреждения [α]; 2 — допускаемая длина повреждения [λ]; 3 — предельная кривая ASME [3] (ОПЗ — Одесский припортовый завод; Укртатнафта— нефтеперерабатывающий завод, г. Кременчуг)

$$\mu = \left\{ 2\sin\left[\frac{(2\pi - \alpha\theta)(1 - \nu)}{4}\right] - \theta(1 - \nu)\sin\frac{\alpha}{2}\right\} \times \left\{ 2\cos\frac{\alpha\theta}{4} - \theta\sin\frac{\alpha}{2}\right\}^{-1}.$$
 (4)

Здесь

$$v = \frac{N}{N_0}; \quad \mu = \frac{M}{M_0}; \quad N_0 = R_e a S_p (2\pi - \alpha \theta);$$
$$M_0 = 2R_e a^2 S_p \left(2 \cos \frac{\alpha \theta}{4} - \theta \sin \frac{\alpha}{2} \right).$$

Требование равнопредельной нагрузки *q* для обечайки как в неповрежденном, так и в поврежденном участке

$$q = q_{\rm T} = R_e / \gamma \tag{7}$$

приводит к зависимости $\alpha = \alpha(\theta)$. Решение уравнений (3)–(6) при заданной предельной нагрузке представлено на рис. 3 и в табл. 1.

Поскольку предельное состояние под действием окружных сил может быть достигнуто при тол-

ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

щине стенки, равной расчетному значению, то в поврежденной области можно ожидать развитое пластическое течение, сопровождающееся формоизменением (гидроштамповка). При этом нами принята жесткопластическая диаграмма деформирования материала. Если в качестве модели рассмотреть осесимметричную схему ($\alpha = 2\pi$), что очевидно даст консервативную оценку, то задача сводится к определению предельного состояния бочкообразной конструкции, образующейся при деформировании тонкого участка оболочки (рис. 4). Очевидно, что искривление образующей может привести к повышению несущей способности ослабленного участка, если его длина достаточно мала. Можно показать, что $2l \leq D$.

В соответствии с формулой Лапласа и учетом уравнения равновесия получим выражения для меридиональных $\sigma_1(0)$; $\sigma_1(1)$ и окружных напряжений $\sigma_2(0)$; $\sigma_2(\lambda)$ в центре и на краю зоны повреждения:

$$\sigma_1(0) = \frac{q(\gamma + V)}{2(1 - \theta)};$$

$$\sigma_2(\lambda) = \frac{q\gamma}{(1 - \theta)} \frac{(2\gamma\lambda^2 - V^2 - \gamma V)(2\gamma\lambda^2 + V^2)}{(2\gamma\lambda^2 - V^2)^2};$$

$$\sigma_{2}(0) = \frac{q\gamma}{1-\theta} \frac{(\gamma+V)(2\lambda^{2}-V)}{2\gamma\lambda^{2}+V^{2}};$$

$$\sigma_{1}(\lambda) = \frac{q\gamma}{2(1-\theta)} \frac{2\gamma\lambda^{2}+V^{2}}{2\gamma\lambda^{2}-V^{2}},$$
(8)

где $V = W_0/S_p$, W_o — стрела прогиба в центре ослабленного участка.

По мере выпучивания окружные напряжения в центральной части остаются неизменными, а меридиональные напряжения возрастают, что соответствует условию пластичности Треска—Сен-Венана. Возможность выпучивания ограничивается условиями прочности по напряжениям $\sigma_i \leq R_e$

Таблица 2. Примеры расчетов конструкций

Таблица 1. Зависимости параметров λ и α от параметра θ

r						
θ		α, град				
	10	20	50	100	500	
0	2,236	3,162	5,000	7,071	15,81	360
0,1	2,121	2,439	2,772	2,941	3,113	360
0,2	1,647	1,860	2,053	2,128	2,199	360
0,3	1,242	1,370	1,486	1,531	1,573	360
0,4	0,906	0,969	1,027	1,050	1,071	360
0,5	0,637	0,658	0,678	0,685	0,692	360
0,6	0,437	0,437	0,437	0,437	0,437	184
0,7	0,305	0,305	0,305	0,305	0,305	146
0,8	0,218	0,218	0,218	0,218	0,218	122
0,9	0,136	0,136	0,136	0,136	0,136	106

(σ_j и R_e — напряжения и предел текучести материала, j = 1, 2). При этом необходимо выполнить условия прочности по деформациям $\varepsilon_{ij} \leq [\varepsilon]$), (ε_{jj} и [ε] — интенсивность деформаций и допускаемые деформации [6]).

Рис. 4. Выпучивание зоны коррозионного повреждения

гаоли	ца 2. примеры расче	гов конструкции								
Номер	Аппарат	Среда	Исходные данные							
			<i>q</i> , МПа	t, °C	<i>D</i> , мм	<i>h</i> , мм	<i>l</i> , мм	α, град	Сталь	
1	Реактор Р-4А (ОПЗ)	Аммиак	5,0	350	2600	24,1	17,5	111	12XM	
2	Ресивер аммика D-4C (ОПЗ)	Аммиак	2,0	51,7	1524	1,8	75,0	37,6	А516Gr70 (сталь 30)	
3	Трубопровод линия 9-3 (ОПЗ)	Конвертированный газ	2,95	265	593	4,0	2125	360	A358 Tp304C11 (03X18H11)	
4	Сепаратор С-404 (Укртатнафта)	Пропан-бутановая фракция	1,6	20	1600	1,4	215	37,2	R-3 (16FC)	
5	Колонна К-16 (Укртат- нафта)	Углеводородные газы	0,4	150	2200	1,5	125	90	СтЗ	
6	Холодильник Х-401 (Укртатнафта)	Фракция пентана	3,3	100	500	1,3	390	68,8	R-3 (16ГС)	

ПРОИЗВОДСТВЕННЫЙ РАЗДЕЛ

Окончание табл. 2

Номер	Аппарат	Среда	Вспомогательные параметры				Результаты расчетов		
		Среда	<i>S</i> _р , мм	γ	λ	θ	[α], град	[λ]	[θ]
1	Реактор Р-4А (ОПЗ)	Аммиак	53,8	24,2	0,0468	0,448	360	0,819	0,867
2	Ресивер аммика D-4C (ОПЗ)	Аммиак	13,0	58,6	0,533	0,138	360	2,49	0,555
3	Трубопровод линия 9-3 (ОПЗ)	Конвертированный газ	12,3	24,1	24,9	0,325	360	1,26	
4	Сепаратор С-404 (Укртатнафта)	Пропан-бутановая фракция	7,4	108	1,98	0,189	360	2,21	0,224
5	Колонна К-16 (Укртатнафта)	Углеводородные газы	4,3	326	1,14	0,349	360	1,31	0,384
6	Холодильник Х-401 (Укртатнафта)	Фракция пентана	5,7	43,9	7,3	0,228	360	1,883	

П р и м е ч а н и е. Здесь q, t, D, h, l, α — внутреннее давление, расчетная температура, внутренний диаметр аппарата; глубина, полудлина и угол охвата зоны повреждения; $[\alpha]$, $[\lambda]$, $[\theta]$ — допускаемые параметры для зоны повреждения: угол охвата, относительные полудлина и глубина (в скобках указаны отечественные аналоги сталей).

Из условий равнопрочности утоненного участка и основной оболочки $\sigma_2(0) = q\gamma$ устанавливается связь между параметрами повреждения λ , θ в зависимости от параметра оболочки γ и стрелы прогиба в центре ослабленного участка. В некоторых случаях возможность деформации конструкции регламентируется величиной прогиба V. По-видимому, приемлемым является значение V = 1...2.

Указанная зависимость ограничивает зону допустимых параметров повреждения (рис. 3, табл. 1). Там же показана кривая *3* ASME [3], которая хорошо согласуется с полученными результатами. Совпадение результатов в наибольшей степени наблюдается при малых параметрах *γ*. При больших значениях получено уточнение в области неглубоких повреждений.

Приведенные на рис. 3 кривые ограничивают область допустимых параметров повреждения и позволяют проводить оценку имеющихся повреждений конструкции, определяемой заданными параметрами повреждения (θ, λ, α). Если вертикальный отрезок, определяемый заданными параметрами повреждения, находится между ограничи-

УкрНИИхиммаш, Харьков тельными кривыми $\lambda = \lambda(\theta)$ и $\alpha = \alpha(\theta)$, условие прочности выполняется и ремонт не требуется. В противном случае необходим ремонт.

При этом можно также пользоваться табл. 1.

Примеры расчетов нескольких конструкций приведены в табл. 2. Если условия прочности сосудов 1, 2, 4, 5 выполняются ($\alpha < [\alpha], \lambda < [\lambda], \theta < < [\theta]$ — ремонт не требуется. Если условия прочности аппарата (3) и трубопровода (6) не выполнены ($\lambda > [\lambda]$), их необходимо ремонтировать.

- 1. ГОСТ 14249-89. Сосуды и аппараты. Нормы и методы расчета на прочность.
- ГОСТ 24755–89. Сосуды и аппараты. Нормы и методы расчета на прочность укрепления отверстий.
- ASME B31G–1991. Инструкция для трубопроводов под давлением. Американский национальный стандарт. Руководство для определения остаточной прочности трубопроводов, подвергшихся коррозии. Американское общество инженеров-механиков.
- Методика оцінки технічного стану труб газопроводу з тривалим строком експлуатації та його залишкового ресурсу. — УкрНДіГгаз, 2002.
- 5. *Малинин Н. Н.* Прикладная теория пластичности и ползучести. — М.: Машиностроение, 1968. — 400 с.
- ДСТУ 4003–2000. Посудини та апарати. Вибір параметрів зміцнювального оброблення.

Поступила в редакцию 07.10.2008