РОЗДІЛЕННЯ НОРМАЛЬНИХ КОМПОНЕНТ НАПРУЖЕНОГО СТАНУ МАГІСТРАЛЬНИХ ТРУБОПРОВОДІВ МАГНІТОАНІЗОТРОПНИМ МЕТОДОМ

С. М. МІНАКОВ, інж. (НТУУ «Київський політехнічний інститут»)

Розглянуто розділення нормальних компонент плаского напруженого стану із використанням восьмиполюсного перетворювача. Для цього запропоновано по черзі розташовувати вектор намагніченості вздовж напрямків головних площадок із одночасним визначенням проекцій цього вектора на вимірювальні електромагніти. Приведено аналітичні залежності та результати експериментальної перевірки. Отримані похибки визначення нормальних компонент напружень прийнятні для використання в інженерних розрахунках.

Separation of normal components of a plane stress state using an eight-pole converter is considered. For this purpose it is proposed to sequentially place the magnetization vector along the direction of the main sites with simultaneous determination of projections of this vector on measuring electric magnets. Analytical dependencies and results of experimental verification are given. Errors of determination of normal stress components, acceptable for application in engineering calculations were determined.

Україна має розгалужену систему газо-, нафто-, продуктопроводів і є потужною транспортуючою державою. Будівництво нових магістральних трубопроводів (MT) завдяки складним економічним умовам останні два десятиріччя майже не ведеться. Враховуючи, що термін експлуатації МТ сягає 30...55 років, проблема забезпечення їх безаварійної роботи набуває важливого значення. Однією з задач вирішення зазначеної проблеми є моніторинг напруженого стану МТ. Завдяки незначним вимогам до стану поверхні МТ (достатньо очищені від ізоляції, бітуму, великих нашарувань іржі та бруду) одним із найбільш придатних методів моніторингу напруженого стану МТ є магнітоанізотропний [1]. Однак сигнал магнітоанізотропного перетворювача у випадку оболонкової конструкції пропорційний різниці нормальних напружень. Часто організаціям, що експлуатують МТ, необхідно знати всі компоненти напружень. Існують методики визначення компонент двовісного напружено стану [1], однак вони розраховані або на зварювальні напруження, або потребують розрахунку кільцевої компоненти, виходячи із внутрішнього тиску.

Метою роботи є розробка нового способу розділення нормальних компонент напружень для магнітоанізотропних перетворювачів за допомогою намагнічування по напрямам головних площадок.

Відомо, що для малих полів (а саме в цих полях працюють зазначені перетворювачі) в роботі [2] одержано залежність магнітної сприйнятливості χ від напружень:

$$\chi(\sigma) = \chi(0) + k_1 \sigma + k_2 \sigma^2, \qquad (1)$$

де $\chi(\sigma)$ — початкова магнітна сприйнятливість при дії напружень паралельно напрямку зміни χ ; $\chi(0)$ — те саме при відсутності напружень;

$$k_1 = \frac{1}{\lambda_s \sigma_{iB}}; k_1 = \frac{1}{(\lambda_s \sigma_{iB})^2}; c_1, c_2$$
 — деякі коефіцієнти,

що залежать від магнітної текстури; σ_{iB} — внутрішні напруження.

Для поперечного ефекту в роботі [3] одержана формула:

$$\chi_{\perp}(\sigma) = \chi(0) - k_1 \sigma - k_2 \sigma^2.$$
⁽²⁾

Тоді при намагнічуванні по напрямках головних напружень (рис. 1) відповідно до виразів (1) і (2) можемо записати:

$$\chi_1 = \chi_1(0) + k_1(\sigma_1 - \sigma_2) - k_2(\sigma_1^2 + \sigma_2^2), \qquad (3)$$

$$\chi_2 = \chi_2(0) - k_1(\sigma_1 - \sigma_2) - k_2(\sigma_1^2 + \sigma_2^2) .$$
⁽⁴⁾

Звідси сума магнітних сприйнятливостей уздовж головних напрямків буде:

$$\chi_1 + \chi_2 = \chi_1(0) + \chi_2(0) - 2k_2(\sigma_1^2 + \sigma_2^2) .$$
 (5)

Визначивши $\chi_1(0)$ та $\chi_2(0)$ на еталонному зразку і віднявши ці значення, одержимо:

$$\Delta(\chi_1 + \chi_2) = 2k_2(\sigma_1^2 + \sigma_2^2).$$
 (6)

Тоді, знаючи різницю нормальних компонентів [1]:

$$\sigma_1 - \sigma_2 = \frac{A}{T}\sqrt{1 + 3\cos^2\varphi},\tag{7}$$

одержимо систему двох рівнянь з двома невідомими. Ця система має два варіанта рішення (з огляду на квадрати σ_1 і σ_2):

1) $\sigma_1(1)$, $\sigma_2(1)$; 2) $\sigma_1(2)$, σ_2 . (2);

© С. М. Мінаков, 2011

Рис. 1. Намагнічування вздовж головних площадок

Для вибору варіанта необхідно мати додаткову залежність, наприклад, нею може бути спрощене рішення.

В роботі [4] автор, розглядаючи магнітопружні силовимірники, оперував магнітопружною чутливістю як похідною магнітної індукції B до величини пружних напружень σ :

$$S_B = \frac{\partial B}{\partial \sigma} \tag{8}$$

і підтвердив залежність сигналу на вимірювальній обмотці по осі x₂ від дотичних напружень (рис. 2):

$$\Delta B_2 = \frac{1}{2} S_\tau \sigma \tag{9}$$

та на обмотці намагнічування по осі x₃ від суми нормальних напружень

$$\Delta B_3 = \frac{1}{2} (S_{\parallel} + S_{\perp}) \sigma. \tag{10}$$

Відношення S_{\perp} до $S_{\rm II}$ характеризує відношення поперечного магнітопружного ефекту до подовжнього при лінійному розтягуванні та стисканні, що є (за аналогією з коефіцієнтом Пуассона) величиною квазісталою у лінійно-пружній області досліджуваного металу.

Тоді при розташуванні по черзі котушки x_3 , що намагнічує в напрямку σ_1 і σ_2 , та приймаючи до уваги, що S_{\perp} має знак, протилежний знаку S_{II} , отримаємо:

$$\Delta B \sigma_1 = \sigma_1 S_{\rm II} - \sigma_2 S_{\perp}, \qquad (11)$$
$$\Delta B \sigma_2 = \sigma_2 S_{\rm II} - \sigma_1 S_{\perp}.$$

Рис. 2. Схема магнітопружнього силовимірника

Визначивши на зразках S_{II} та S_{\perp} , отримаємо варіант 3 $\sigma_1(3)$; $\sigma_2(3)$.

Тепер можна вибрати з варіантів 1 чи 2 той, котрий найбільш близький до варіанта 3.

Конструкція восьмиполюсних перетворювачів [5] (рис. 3) дозволяє використовувати два електромагніти (П-подібні магнітопроводи з обмотками) для обертання вектора намагніченості. Сумарний вектор \vec{H} визначається сумою векторів напруженості магнітного поля першого \vec{H}_1 та другого \vec{H}_2 електромагнітів). У такий спосіб $\vec{H} = \vec{H}_1 + \vec{H}_2$, відкіля випливає, що змінюючи величини \vec{H}_1 і \vec{H}_2 можна змінювати напрямок \vec{H} і розташовувати останній за напрямками головних площадок. На них напрямок вектора намагніченості \vec{M} буде збігатися з напрямком вектора напруженості \vec{H} . На двох П-подібних електромагнітах, що залишилися, будемо одержувати проекції вектора на-

Розглянемо практичну реалізацію цього підходу (рис. 4). Нехай H_1 та H_2 — полюси електромагнітів, що намагнічують, а M_1 та M_2 — полюси вимірювальних. Тоді намагнічуємо уздовж σ_1 шляхом додавання векторів $\overline{H_1}$ і $\overline{H_2}$. Під дією механічних напружень величина вектора намагніченості \overline{M} змінюється і він набуває розмір $\overline{M_1}$. Проекція \overline{M} на вимірювальний електромагніт M_2 — $\overline{m_1}$ наводить вимірюваний сигнал n_2' . При намагнічуванні уздовж σ_2 \overline{M} змінюється і набуває розміру $\overline{M_2}$. Проекції цього вектора на вимірювальний електромагніт M_2 — $\overline{m_2}$ наводить сигнал n_2'' :

$$|\vec{m}_1| = n_2'; |\vec{m}_2| = n_2''.$$
(12)

З огляду на відомий кут головних напрямків *а*_{гол} одержимо:

$$M_1 = n_2'/\cos \alpha_{\text{гол}}; M_2 = n_2''/\cos (90^\circ - \alpha_{\text{гол}}),(13)$$

звідки

$$\Delta \chi_1 = M_1 - M_1(0) = (n_2' - n_2'(0)) / \cos \alpha_{\text{гол}}, \quad (14)$$

$$\Delta \chi_2 = M_2 - M_2(0) = (n_2'' - n_2''(0)) / \cos(90^\circ - \alpha_{\text{гол}}),$$

де $M_1(0)$ і $M_2(0)$ — величини початкових векторів намагніченості по напрямках σ_1 і σ_2 при відсутності механічних напружень; $n_2^{\prime\prime}$ — сигнал елек-

Рис. 3. Складений восьмиполюсний перетворювач: а — магнітопровід; б — перетворювач

НАУЧНО-ТЕХНИЧЕСКИЙ РАЗДЕЛ Таблиця 2. Дані суми квадратів головних напружень

Таблиця 1. Експериментальні дані градуювання перетворювача при намагнічуванні вздовж головних площадок

				σ 1, MΠa	σ ₂ , ΜΠa	
σ1, МПа	n2′, мВ	s ₂ , МПа	n2″, мВ			за дан
0	1013	0	1996			деформ
0	1013	-10,5	1991	0	-10,5	11
4,2	1014	-10,5	1979	4,2	-10,5	12
4,2	1019	-14,7	1976	4,2	-14,7	23
12,6	1019	-14,7	1959	12,6	-14,7	37
12,6	1024	-25,2	1956	12,6	-25,2	79
18,9	1026	-25,2	1948	18,9	-25,2	99
18,9	1030	-33,6	1944	18,9	-33,6	14
25,2	1032	-33,6	1932	25,2	-33,6	17
25,2	1037	-39,9	1927	25,2	-39,9	22
31,5	1039	-39,9	1912	31,5	-39,9	25
31,5	1045	-46,2	1910	31,5	-46,2	31
37,8	1047	-46,2	1899	37,8	-46,2	35
37,8	1053	-54,6	1896	37,8	-54,6	44
44,1	1055	-54,6	1886	44,1	-54,6	49
44,1	1061	-63	1878	44,1	-63	59
50,4	1063	-63	1878	50,4	-63	65

$σ_1$, ΜΠα	σ2, МПа	$\sigma_1^2 + \sigma_2^2$, MПa		Похибка, %
		за даними деформометра	за розрахунком	
0	-10,5	110	120	-8
4,2	-10,5	128	203	-37
4,2	-14,7	234	331	-29
12,6	-14,7	375	518	-28
12,6	-25,2	794	980	-19
18,9	-25,2	992	1176	-16
18,9	-33,6	1486	1614	-8
25,2	-33,6	1764	1911	-8
25,2	-39,9	2227	2661	-16
31,5	-39,9	2584	2831	-9
31,5	-46,2	3127	3431	-9
37,8	-46,2	3563	3805	-6
37,8	-54,6	4410	4730	-7
44,1	-54,6	4926	5082	-3
44,1	-63	5914	5604	6
50,4	-63	6509	5714	14

Таблиця 3. Дані визначення головних напружень для спрощеного рішення

Експеримент			Розрахунок				
$\sigma_1, M\Pi a$	σ2, МПа	$B^i_{\sigma_1}$, мВ	$B^{i}_{\sigma_{2}}$,мВ	$\sigma_1, M\Pi a$	похибка, %	σ2, МПа	похибка, %
0	0	2666	2170	-	-	-	-
0	-10,5	2673	2162	2,1	-	-7,9	25
4,2	-10,5	2677	2159	5,1	-21	-6,5	38
4,2	-14,7	2682	2150	2,8	34	-12,1	18
12,6	-14,7	2692	2142	9,7	23	-11,5	22
12,6	-25,2	2699	2133	10,6	16	-19,4	23
18,9	-25,2	2708	2125	10,6	16	-20,6	18
18,9	-33,6	2715	2115	15,7	17	-28,5	15
25,2	-33,6	2722	2110	21,2	16	-27,5	18
25,2	-39,9	2731	2098	21,9	13	-37,6	6
31,5	-39,9	2731	2096	27,7	12	-34,4	14
31,5	-46,2	2751	2076	28,9	8	-51,3	-11
37,8	-46,2	2751	2073	33,5	11	-48,0	-4
37,8	-54,6	2767	2064	40,9	-8	-60,4	-11
44,1	-54,6	2774	2055	41,8	5	-59,4	-9
44,1	-63	2783	2047	47,1	-7	-69,5	-10
50.4	-63	2789	2044	53.3	-6	-67.4	-7

тромагніта H_2 при відсутності механічних напружень.

Тоді, підставивши вирази (14) у формулу (5), одержимо:

$$2k_2 (\sigma_1^2 + \sigma_2^2) = (n_2' - n_2'(0))/\cos\alpha_{\text{гол}} + (n_2'' - n_2''(0))/\cos(90^\circ - \alpha_{\text{гол}}).$$
(15)

Аналогічно одержимо вираз для спрощеного рішення:

$$\Delta B_{\sigma_1} = (n_2' - n_2'(0))/\cos \alpha_{\text{гол}} , \qquad (16)$$

$$\Delta B_{\sigma_2} = (n_2'' - n_2''(0))/\cos (90^\circ - \alpha_{\text{гол}}) .$$

Для перевірки зазначених вище підходів використовували дослідну установку для дослідження способу визначення нормальних компонент шляхом намагнічування за напрямками головних площадок (рис. 5). Для досліджень використовували хрестоподібний зразок сталі 09Г2С із навантажен-

ТЕХНИЧЕСКАЯ ДИАГНОСТИКА И НЕРАЗРУШАЮЩИЙ КОНТРОЛЬ, №3,2011

Рис. 4. Сигнали восьмиполюсного перетворювача при намагнічуванні вздовж напрямків головних площадок

ням останнього за допомогою згинаючих моментів (рис. 6).

Для цього встановлювали перетворювач у центр хрестоподібного зразка так, щоб електромагніти H_1 та H_2 були розташовані симетрично відносно одного плеча зразка, а відповідно електромагніти ${\it H}_1$ та ${\it H}_2$ — симетрично відносно іншого ($\alpha_{\text{гол}} = 22,5^{\circ}$). Навантажували плечі зразка, створюючи згинальні навантаження. Так як плечі хрестоподібного зразка не затиснуті, то навантаження одного плеча не викликає зміну напружень у іншому плечі. Тобто напрямами головних площадок є напрями плечей. Навантаження проводили із створенням в одному плечі розтягу, а в іншому стиснення. На електромагніти намагнічування H_1 та H_2 подавали напругу 5,3 В частотою 1 кГц, що, відповідно до правила складання векторів, створювало сумарний вектор намагнічування,

Рис. 5. Дослідна установка для дослідження способу визначення нормальних компонент шляхом намагнічування за напрямом головних площадок: V_1 , V_2 — вольтметри для контролю рівня напруг на обмотках (H_1 та H_2) перетворювача; V_3 — мілівольтметр для визначення сигналів з обмоток перетворювача (обмотки H_1 та H_2)

Рис. 6. Установка для навантаження хрестоподібного зразка за допомогою згинаючих моментів

еквівалентний подаванню на один електромагніт напруги 9,7 В. Обертання вектора намагнічування з одного плеча зразка до іншого створювали за допомогою зміни фази сигналу в електромагніті H_1 на протифазу шляхом перекомутації початку та кінця обмотки H_1 , а для досягнення необхідного сумарного вектора намагнічування подавали на електромагніти напругу 12,4 В. Визначення показів перетворювача проводили на обмотках M_1 та M_2 за допомогою мілівольтметра.

Визначення напружень у хрестоподібному зразку проводили тензометричним методом за допомогою механічного деформометра із базою вимірювань 50 мм та ціною поділки 0,001 мм. Визначали переміщення отворів баз у центрі перехрестя зразка. Переміщення, що були отримані, перераховували у деформації та напруження за відомими співвідношеннями теорії пружності.

Градуювання перетворювача з метою визначення S_{II} , S_{\perp} проводили на одноосному, а $2k_2$ — на двовісному навантаженні. Шляхом усереднення даних отримали: $S_{II} = 1,25$ МПа/мВ, $S_{\perp} = 0,89$ МПа/мВ, $2k_2 = 0,0454$ мВ/МПа.

Експериментальні дані градуювання перетворовача наведені у табл. 1.

Для перевірки формули (15) розраховували суму квадратів головних напружень за показаннями деформометра та перетворювача (табл. 2).

Для перевірки спрощеного рішення визначали $\Delta B_{\sigma 1}$ та $\Delta B_{\sigma 2}$ за показаннями перетворювача при створенні у хрестоподібному зразку в одному плечі розтягу, а у другому — стиснення.

При цьому

$$\Delta B^{i}_{\sigma_{1}} = B^{i}_{\sigma_{1}} - B^{0}_{\sigma_{1}}, \ \Delta B^{i}_{\sigma_{2}} = B^{i}_{\sigma_{2}} - B^{0}_{\sigma_{2}}, \tag{17}$$

де $B_{\sigma_1}^0, B_{\sigma_2}^0$ — відповідні показання перетворювача на ненавантаженому зразку; $B_{\sigma_1}^i$ та $B_{\sigma_2}^i$ — на навантаженому зразку при *i*-му навантаженні.

Далі розраховували напруження по формулі (16) (табл. 3).

Аналіз табл. 2 та 3 показує збільшення похибки при малих напруженнях та зменшення похибки при збільшенні напружень. Величина похибки 18...5 % є прийнятною для використання в інженерних розрахунках у промислових умовах.

Висновок

Розділення нормальних компонент напруженого стану МТ магнітоанізотропним методом може бути реалізоване за допомогою визначення положення головних площадок, почергового обертання вектора намагнічування по напрямам головних площадок та розрахунків компонент нормальних напружень по отриманим залежностям.

Одним из важных параметров диагностики магистральных трубопроводов является их напряженное состояние. Часто организациям, эксплуатирующим данные трубопроводы, необходимо знать обе нормальные компоненты плоского напряженного состояния. Статья посвящена разделению нормальных компонент напряженного состояния магистральных трубопроводов магнитоанизотропным методом с использованием восьмиполюсного преобразователя. Для этого предлагается поочередно располагать вектор намагниченности по направлениям главных площадок с одновременным измерением проекций указанного вектора на измерительные электромагниты. Это дает возможность определить сумму квадратов нормальных компонент напряжений, что в сочетании с известной разностью позволяет разделить указанные компоненты. Принимая во внимание, что сигнал намагничивающей обмотки пропорционален сумме напряжений, предложен также упрощенный вариант разделения компонент напряжений. Приведены аналитические зависимости и результаты их экспериментальной проверки. Полученные погрешности определения нормальных компонент плоского напряженного состояния приемлемы для использования в инженерных расчетах.

- 1. Особенности измерения механических напряжений электромагнитным методом в трубопроводах и сосудах давления газового и нефтяного комплекса / А. Я. Недосека, С. К. Фомичев, С. Н. Минаков и др. // Техн. диагностика и неразруш. контроль. 1996. № 1. С. 55–66.
- 2. Вонсовский С. В., Шур Я. С. Ферромагнетизм. М-Л.: Гостехиздат, 1948. 816 с.
- 3. *Ершов Р. Е., Шель М. М.* К вопросу измерения напряжений магнитоупругим методом // Завод. лаб. 1965. № 7.
- Михайлов О. П. Тензор чувствительности магнитоупругих преобразователей // Электричество. — 1979. — № 9. — С. 25–30.
- Новый магнитоанизотропный преобразователь для определения интенсивности напряжений в изделиях из ферромагнитных материалов / А. Я. Недосека, С. К. Фомичев, С. Н. Минаков и др. // Техн. диагностика и неразруш. контроль. — 1996. — № 3. — С. 71–74.

Надійшла до редакції 05.07.2011