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The paper deals with the task of automated segmentation of images of defects metal surfaces. The aim of the study is to improve
segmentation algorithms using deep learning methods. The expediency of using the U-Net neural network, which is effective
in the tasks of semantic image segmentation, is substantiated. With the help of a special architecture, the network can create
segmentation masks with high efficiency. The training dataset for the neural network contained images of four classes of defects,
including chips, cracks, and stains. As a result of analyzing the distribution of defect classes in the training dataset, it was
concluded that the classes were unbalanced, which negatively affects the training results. To evaluate the quality of network
training, a set of metrics such as Accuracy, F1 Score, and IOUScore is considered. The feasibility of using these metrics is
analyzed, taking into account the features of the training data set. It is proved that under conditions of significant imbalance
of classes, the Accuracy metric does not reflect the real quality of the model. The influence of different variants of the ResNet
architecture backbone on the training results is analyzed. It is determined that the best results are shown by the ResNet18 model,
which managed to obtain a Dice coefficient of 69 % and an IOUScore of 53 % on the test data set. It is proved that an increase
in the number of model parameters does not always lead to an improvement in the reliability of the results. The article provides
examples of test images and defect masks and countures predicted by the neural network. 13 Ref., 1 Tabl., 7 Fig.

VY cTaTTi po3mIsAAaEThCS aKTya bHE 3aBIaHHs aBTOMAaTH30BaHOI cerMeHTanil 300pakeHb Ae(eKTiB MeTaJeBIX IOBEPXOHb. MeTta
JOCITI/DKEHHS TIOJIsrae y BIOCKOHAIGHH] aJITOPUTMIB CEIrMeHTalii 3 BAKOPUCTAHHSIM METO/IIB INIMOMHHOTO HaBYaHHs. OOIpyH-
TOBAHO JIOIUIBHICT BUKOpHUCTaHHS HelipoHHOT Mepexi U-Net, sika € e()eKTHBHOIO B 3aBIaHHIX CEMAaHTHYHOI CerMeHTAaIlil
300pakeHb. 3a IOMTOMOTOIO CIICIiaIbHOT apXITEKTYPH MEperKa 31aTHA CTBOPIOBATH MACKH CETMEHTAIIIT 3 BUCOKOO e(eKTUBHI-
cTi0. HaBuanpHuit Habip gaHuX JUTsl HEHPOHHOT MepeKi MiCTHTh 300paXkeHHs Ie(eKTiB JOTHPHOX KIIACiB, BKIIIOYAIOUH BIIKOIIH,
TPILIMHHM Ta IWIIMHA. Y Pe3yJIbTaTi aHaji3y po3Ho/ily Ki1aciB Ae(eKTiB y HaB4aIbHOMY HaOOpi JaHUX 3p0OJIEHO BUCHOBOK IIPO
He30a1aHCOBAHICTh KJIACIB, [0 HETaTHBHO BILIMBAE HA Pe3y/IbTaTH HaBYaHHS. JIJIs OIIHKH SIKOCTI HABYaHHS MEPEeXi PO3IISIHYTO
Habip MeTpuK, Takux sk Accuracy, F1 Score Ta IOUScore. [IpoananizoBaHo TOIiNEHICTS BAKOPUCTAHHS JaHUX METPHUK i3 Bpa-
XyBaHHSIM 0COOIMBOCTEN HaBYaJIbHOTO HAaOOpy JaHuX. JloBeaeHO, 10 B yMOBaX 3HAYHOI HE30aIaHCOBAHOCTI KJIAaCiB METpPHKa
Accuracy He BijoOpakae peasbHOI sikocTi Mozeni. [IpoBeneHo aHai3 BIUIMBY pi3HHX BapiaHTiB OekOOHY apXxiTekTypu ResNet Ha
pe3y/bTaT HaBYaHHs. Bu3HaveHo, 1110 HalKpallli pe3yybTraTu rmokasye Moneib ResNet18, 3a 10moMororo sikoi BIaaocsi OTpuMaTu
3HaYeHHs Koedinienty Jlaiica Ha piBHI 69 % Ta mokazHuka [OUScore Ha piBHI 53 % Ha TecToBOMY Habopi naHux. JloBeneHo, mo
301IBIIEHHS KITBKOCTI ITapaMeTpiB MOZIeNIi He 3aBKIN MPU3BOJUTH 0 TOKPAIEHHs JOCTOBIpHOCTI pe3ynbrariB. HaBeneHno npu-
KJIaJ{ TECTOBUX 300paKeHb Ta MPOrHO30BAHUX HEHPOHHOT MEPEXKEI0 MACOK 1 KOHTYpIB nedektin. biomiorp. 13, Tadm. 1, puc. 7.
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Introduction. Defect detection is an important
step in any product manufacturing and operation pro-
cess. It helps ensure product quality and reliability
and reduces the risk of negative consequences for us-
ers and manufacturers.

Metal products are widely used in various applica-
tions. Therefore, it is an urgent task to recognize their
surface defects, which can significantly impair the qual-
ity and reliability of the product. Such defects can be-

come an obstacle during the processing or use of the
product, which can lead to emergencies and negatively
affect human safety and health. Early detection of defects
allows you to analyze the causes of their occurrence and
make appropriate changes to production processes. This
helps to improve the efficiency and cost-effectiveness of
production, as well as reduce the percentage of waste. To
improve the efficiency of defect detection and recogni-
tion, this process can be automated [1].
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There are various methods of metal surface in-
spection: visual, visual-optical, eddy current, ultra-
sonic, magnetic particle, etc. However, the visual-op-
tical method is more productive in terms of inspection
speed. For example, compared to the eddy current
method, the visual-optical inspection method allows
you to control a large area of the object with one cam-
era image. This method is quite simple and cheap to
use, requires simpler equipment than other methods,
and can be applied directly on the production line.

There are different approaches to automating the
process of detecting defects in camera images. One of
them is detection, i.e. localization and classification of
a defect by circling it in a rectangular box on the im-
age. However, detection does not allow you to accu-
rately determine the boundaries of the defect and does
not provide information about its area, shape, and other
parameters that may be important for further analysis.

Another approach uses image segmentation to
more accurately identify the location of the defect
and separate it from the defect-free area of the in-
spected object. As a result of the segmentation, spe-
cial masks are superimposed on the image, which re-
flects the reliable prints or contours of the detected
defects. The masks or contours can be painted with
different colors that correspond to different classes of
defects. The use of segmentation can help automate
the defect detection process and reduce the time re-
quired to analyze a large number of images. This can
be especially important in a production environment
where you need to quickly and accurately identify de-
fects to ensure high product quality.

Although there are various methods for segmenta-
tion, not all of them allow you to classify the detected
objects. Given the rapid development of deep learn-
ing technologies, neural network models are the most
promising option for automated segmentation tasks.
It is neural networks that currently show the best re-
sults in the field of image processing [2].

Review of previous studies. The authors of [3] de-
veloped an experimental system for controlling rolled
metal products capable of real-time operation in pro-
duction conditions. The visual-optical control method
is used. The illumination scheme of the product can
be adjusted to optimize the contrast of various defects,
depending on the surface roughness of the base mate-
rial and defects. The good functioning of the illumi-
nation and especially its support in defect recognition
has greatly simplified image analysis algorithms. De-
fect recognition is based on the analysis of blobs (bi-
nary large objects) in images. The authors found that
the classification process using statistical methods
is complicated by large variations in different types
of defects and the lack of accurate models for their
shape. The classification of larger defects, such as lon-
gitudinal and transverse scratches, works well. But the
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system is not reliable for defects consisting of several
small defects, such as spills. Also, the disadvantage of
all statistical methods is low resistance to interference,
low versatility, and poor generalization properties.

In article [4], a new approach is proposed aimed
at increasing the reliability of corrosion damage seg-
mentation results using traditional methods. The seg-
mentation results are negatively affected by uneven
illumination, protective coating similar to the corro-
sion colors, and the presence of corrosion spots. Each
of these factors can cause over- or under-segmenta-
tion of the corrosion damage area. The authors pro-
pose an intelligent digital image processing algorithm
for segmenting corrosion defects on painted steel sur-
faces. After image preprocessing, an alpha-matting
procedure is applied. This procedure uses segmenta-
tion with a Gaussian mixture model.

The proposed method creates visible image dis-
tortions around the shadow boundaries. A similar
problem occurs when detecting corrosion spots us-
ing alpha matting. This problem is partially solved
by selecting some threshold values. However, this
approach is only effective for small image areas, as
different areas of the image may require different
thresholds for proper segmentation. In addition, the
proposed method for detecting corrosion on a red
background has a high probability of error for images
that contain only corroded or only undamaged areas.

In work [5], computer vision technologies are pro-
posed for detecting defects on metal surfaces. The
approach uses the architecture of deep convolution-
al neural networks for segmentation. The overall seg-
mentation model uses various image preprocessing and
post-processing techniques to optimize the algorithm
to make it practical for use. The system accurately seg-
ments the defective areas and has a classification accu-
racy of 93.46 %, even if the images contain many dis-
tortions. Qualitative and quantitative analysis confirms
the performance of the algorithm. Another advantage of
the proposed model is that it can be easily redesigned to
solve similar problems of segmentation of other objects
with minor modifications to the algorithm.

At the same time, the system under consideration
is designed to segment images of only one type of de-
fect - metal cracks. This is a disadvantage since it is
often necessary to detect and classify more than one
defect. Therefore, there is a need to develop a neural
network that can segment images with several differ-
ent types of defects.

To solve the problem of detecting atypical defects,
the authors of [6] introduce a hierarchical method for
classifying and detecting defects in steel surfaces. The
proposed approach uses a hierarchical structure for di-
viding objects into two classes at the first stage, and
object detection and semantic segmentation algorithms
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a b

Fig.1. Detection of defects in the form of scratches: a — input image; » — annotation of the input image; ¢ — output image

at the second stage. It demonstrates a mean accuracy
rate (mAP) of 77.12 % in detecting surface defects.

An example of the detection result and the gener-
ated defect map on the test data are shown in Fig. 1.
In the figure, you can see the input image, the corre-
sponding ground truth (GT) annotation, i.e. the cor-
rect answers to the input image, and the final image
predicted by the neural networks. The similarity be-
tween the predicted image and the GT annotated im-
age is obvious. Also, the model was able to detect
faint scratches, although the annotation did not pro-
vide information about them.

The disadvantage of this development is that clas-
sification and segmentation are performed by two
separate neural networks. This architecture is compli-
cated because instead of one network, two need to be
trained. This significantly reduces the adaptability of
the system and the requirements for the training da-
taset. In addition, the authors point out that some de-
fects still cannot be detected because the difference
between the defect and the background is not clear.
The defect detection is also complicated by the disad-
vantage of the chosen network architecture for detec-
tion, namely the limited set of anchor boxes.

Thus, an urgent task is to improve the method of
segmenting images of metal surface defects. In par-

Contracting

ticular, it is promising to use a single neural network,
the architecture of which will be devoid of the disad-
vantages discussed in the analytical review.

Statement of the problem. This study aims to
improve algorithms for automated segmentation of
images of surface defects of metal surfaces. Such a
system should automatically detect the location of de-
fects, determine their contours, and classify them by
type. The input images of the object under inspection
are received by the intelligent digital processing unit
from a special camera installed on the production line
or directly above the product. The output of the sys-
tem is an image with highlighted contours of the de-
tected defects. The color of the contour corresponds
to a certain class (type) of the defect.

Based on the above review of existing works, seg-
mentation methods based on deep learning are promis-
ing. The developed automated segmentation algorithms
should have no less efficiency and reliability than ex-
isting analogs. The system should be free of the archi-
tectural limitations discussed earlier and be flexible and
convenient for practical use in industrial environments.

Description of the model for segmentation. To
date, the best results in image segmentation tasks are
demonstrated by the U-Net neural network [7]. This
network has a special convolutional architecture op-
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Fig. 2. The basic architecture of the U-Net neural network
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Fig. 3. Example image from the training dataset

timized for semantic image segmentation (Fig. 2).
Its main idea is that the network has two data paths:
contracting and expansive. The contracting path is re-
sponsible for reducing the size of the image and ob-
taining its abstract features - diagnostic features. The
expansive path is designed to restore the original im-
age size and accurately recreate the segmentation
mask.

The contracting path consists of several consec-
utive convolutional layers with the ReLU activation
function, as well as a max pool subsampling layer.
This process reduces the image size and helps to se-
lect the most important informative features.

Expansive path layers contain up-sampling opera-
tors that increase the size of feature maps. After that,
convolutional layers are used to reduce the number
of feature channels. Then, using concatenation with
the corresponding feature maps from the contracting
path, the network tries to preserve the details of the
input image and refine the segmentation masks.

The last layer in the network is a convolutional
layer with 1x1 filters, which reduces the number of
channels to the number of classes that the network
determines. For example, if the network defines two
classes, the last convolutional layer will return two
channels. Each channel will contain a segmentation
mask for the type of defect it defines.

In general, U-Net can restore images with
high confidence [8]. The U-Net method also uses
«skip-connections» that provide information transfer
between different layers of the network. This allows
for more efficient use of information from different
resolution levels and helps to avoid the problem of
losing context from small details.

U-Net’s packetized blocks are organized in the
form of backbones [9]. A backbone is a basic archi-
tecture used to build more complex networks. Most
often, the ResNet architecture is used as a backbone
in the U-Net network. In this case, the architecture
of the contracting path of the U-Net network will be
identical to the ResNet architecture. And the expan-
sive path will be an inverse copy of the ResNet net-
work. The computing power of the network varies de-
pending on the complexity (depth) of the backbone.

Description of the training dataset. To train the
neural network model, we used an open dataset from
Severstal [10]. This is a ready-made set of images cre-
ated using high-frequency cameras for the training
and validation of neural networks. An object in each
image may have no defects, a defect of one class, or
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several defects of different classes. In total, there are
4 different classes of defects in the images, namely:
multiple chips, a single vertical crack, multiple verti-
cal cracks, and multiple large patches on the surface.
The mask for each class of defects is encoded in a sin-
gle line, even if there are several unrelated defective
areas in the image. The dataset contains 12568 images
for training and 5506 images for testing. The material
in the images used to train and test the neural network
is steel. The shooting conditions are unknown. The
resolution of the images is 800x128 pixels.

To reduce the size of the annotation file, a spe-
cial way of encoding the length of the pixel value
sequence is used. Instead of providing an exhaus-
tive list of indices for segmentation, pairs of values
containing the starting position and length of the se-
quence are provided. For example, ‘1 3’ means that
starting from pixel 1, 3 pixels (1, 2, 3) should be con-
sidered. Thus, the code ‘1 3 10 5’ means that pixels
1,2,3,10, 11, 12, 13, 14 should be included in the
mask. The encoding algorithm additionally checks
that the number pairs are sorted, have positive val-
ues and that the decoded pixel values are not dupli-
cated. The pixels are numbered from top to bottom,
then from left to right: pixel 1 is pixel (1,1), pixel 2 is
pixel (2,1), and so on. Fig. 3 shows an example with
defects of the third and fourth classes, each of which
is highlighted by a contour of a certain color.

Fig. 4 shows a graph that displays the distribution
of defect classes in the training dataset. Analyzing the
graph, we conclude that the classes are not balanced.
The majority (77.3 %) of the images contain a third-
class defect and only 3.7 % contain a second-class
defect. The imbalance of classes is caused by the
fact that during production, some defects occur much
more often than others. And some, on the contrary,
occur quite rarely. Therefore, it is not possible to take
more images of, for example, a second-class defect.

Description of metrics for segmentation. The
segmentation task requires the use of specialized
metrics that should take into account both the accu-
racy of the obtained defect masks and the quality of
classification. The classical accuracy metric reflects
the proportion of correctly classified pixels relative
Percent of images

Defect type

Fig. 4. Distribution of defect classes
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to the total number of pixels in the dataset. For ex-
ample, if the model classifies 90 out of 100 pixels
correctly, the accuracy will be 90 %. The disadvan-
tage is that this metric does not work well for unbal-
anced classes [11].

More reliable estimates can be obtained using
metrics based on the assessment of first- and sec-
ond-order errors. Thus, the precision metric reflects
the proportion of correctly classified defective pixels
relative to all pixels that the model has assigned to
the defective class. For example, if the model clas-
sifies 100 pixels as defective, 80 of them are really
defective, and 20 are identified incorrectly, then the
precision will be equal to 80 %.

Recall is a metric that measures the proportion of de-
fective pixels detected by the model in relation to the total
number of pixels that are actually defective. Recall evalu-
ates how efficiently the model finds defective pixels.

For the final evaluation of the classification qual-
ity, F1 Score is usually used. This metric allows you
to assess the balance between precision and recall. F1
Score is maximized when precision and recall have
the same high value. This means that the model is
equally good at detecting and classifying defective
pixels. This indicator is calculated by the formula:

FI Score— 2(precision x recall)

1
(precision+recall) M
If you use the F1_Score metric to evaluate the
quality of segmentation, the formula for calculating
it looks like this:

2><|XﬂY|

F1 Score=———,
- (IX[+[¥])

2)

where [X| and |Y| are the number of elements in the
samples X and Y, respectively, [XNY| is the number of
common elements in the samples X and Y. In our case,
X is the annotated pixels from the training dataset, Y is
the pixels processed by the neural network. The F1 Score
metric presented in this form is called the Dice coefficient
[12]. The Dice coefficient takes values from 0 to 1, where
0 means a complete absence of common elements, and 1
means a complete match between the samples.

Another metric for evaluating the quality of seg-
mentation is the IOU (Intersection over Union) or Jac-

card index. It reflects the ratio of the intersection area
of the predicted mask and the true mask to the area
of their union. Intuitively, IOU can be interpreted as a
measure of similarity between the predicted and true
masks. This allows you to evaluate the reliability of
the model segmentation for a particular image, as well
as to make a generalized assessment of the quality of
the model segmentation for the entire dataset.

In practical applications, modified versions of
10U are often used, such as Mean IOU or IOU Score,
which are calculated for the entire dataset and allow
us to obtain a generalized assessment of the quality
of model segmentation. IOU Score is calculated as
the average IOU value over all images in the dataset.
This metric is usually used in multiple segmentation
tasks when each image contains several classes of ob-
jects, which is suitable for assessing the quality of the
network with the proposed U-Net architecture.

Results analysis. Figure 5 shows a graph of the
model training using ResNet18, which illustrates the
change in the Dice coefficient over 30 epochs. The fol-
lowing settings were chosen for training: activation
function — ‘sigmoid’ (converts any input signal into a
range of values from 0 to 1), optimizer — ‘adam’ (adap-
tive gradient descent optimization method), loss func-
tion — ‘binary_crossentropy’ (used to determine which
of the two classes a given input element belongs to).

During the training, five different variants of the
ResNet architecture backbones were tested. The aver-
aged results of the network using each of the backbones
are shown in table. At first glance, the accuracy param-
eter shows incredibly good results. However, when cal-
culating this parameter, the background class that occu-
pies most of the image is taken into account. This leads
to a critical imbalance of classes, which makes the ac-
curacy metric unreliable for these conditions [11].

The best results are shown by the model using the
Resnet18 backbone, which has a Dice coefficient of
69 % and an IOUScore of 53 %. At the same time,

Comparison of the results of different backbones

Dice-coel

Backbone Params Acc Dice 10UScore
Resnet18 11M 0.9922 0.6912 0.5306
Resnet34 21M 0.9923 0.6724 0.5092
Resnet50 23M 0.9920 0.6721 0.5088
Resnet101 42M 0.9922 0.6744 0.5112
Resnet152 58M 0.9921 0.6660 0.5024
T - -.\\.' 3
1 1 1 |
15 20 25 ol
Epoch

Fig. 5. Graph of Dice coefficient changes during epochs using the ResNet18: / — val-dice-coef, 2 — trn-dice-coef
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c

Fig. 6. Testing of the neural network: ¢ — annotated image from the training dataset, » — mask at the output of the neural network,

¢ — predicted defect contour

Fig. 7. Examples of image segmentation with defects: a — correct contours from the training dataset, » — contours predicted by the

neural network

this model has the smallest number of parameters.
That is, it will take much less time to train it com-
pared to more complex backbones. The worst results
were obtained for the ResNet152 backbone, although
this network has the largest number of parameters.

Table shows that quite significant changes in the
number of parameters have little impact on the qual-
ity of the model. Thus, it can be concluded that in-
creasing the number of model parameters does not
always lead to an improvement in its efficiency. In
addition, the table shows that all the models under
consideration have a Dice coefficient value of up to
69.12 %. This means that the resulting segmentation
masks are reliable. The reliability of the segmentation
is also evidenced by the relatively high value of the
10UScore [13].

Fig. 6 shows examples of annotated images for test-
ing and the corresponding masks and defect contours
predicted by the neural network. In the process of pro-
cessing the original image, masks are first predicted
(Fig. 6, b), which are then filtered by threshold level to
obtain defect contours (Fig. 6, ¢). Comparing the con-
tours of the defect detected by the network with the an-
notated contours (Fig. 6, a), we can conclude that the
segmentation quality is high. This is confirmed by the
quantitative indicators discussed earlier.
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Fig. 7 shows a test image with defects of two
different classes. Comparing the annotated image
(Fig. 7, a) and the one predicted by the network
(Fig. 7, b), we can see that the model found all the
defects that are present on the surface. At the same
time, some areas were mistakenly labeled as defec-
tive. The classes of correctly detected defects are cor-
rectly identified by the system.

Conclusions

According to the results of the analytical review,
the prospects of improving the methods of automat-
ed image segmentation for detecting defects in metal
surfaces by the visual-optical method have been es-
tablished. The use of deep learning models has sev-
eral advantages over classical segmentation meth-
ods. This provides greater control efficiency and
higher system adaptability compared to traditional
approaches.

It has been determined that the U-Net architec-
ture currently demonstrates high-quality results in
the segmentation of images with surface defects. For
the used dataset, the Dice coefficient was obtained at
the level of up to 69.12 % and the IOUScore up to
53.06 %. Additionally, we compared different back-
bones to determine the impact of their complexity
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on the overall performance of the model. The results
showed that more complex backbones do not provide
higher control reliability.

Among the existing limitations, we can highlight
the fact that training a neural network requires a large
number of annotated images of metal surface defects.
An insufficient number of images or their low repre-
sentativeness leads to a deterioration in the quality of
segmentation, which is a common drawback for all
deep learning models. The use of the U-Net neural
network may have limitations in the quality of seg-
mentation if the defects on the metal surface are more
complex than those on which the network was trained.

One possible area for further research is to improve
the architecture of the neural network to improve the
values of the obtained metrics. It is also interesting
to investigate the possibility of using other types of
neural networks or their hybrid models. Another im-
portant task is to expand the training data set. In par-
ticular, increasing the resolution of images, increasing
the number of defect classes, and the quality of their
annotations.

Due to the high adaptability of this method, we
can consider using it for other purposes in the future.
For example, for automated segmentation of defects
on other types of surfaces. The use of neural net-
works in automated image segmentation has great po-
tential for application in many fields, including medi-
cine, industry, transportation, and many others.
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MeTiB Ha 6asi BIM/A.

I'IpoeKT «COKPAT» — nporpamHo-anapaTHUA NPUCTPIN ANS LWBUAKOIO BUSIBMEHHS
HeposipBaHux 6oenpunacis Ta MiH 3 AUCTaHLINHOIO 3HaXoAXXeHHS BUbyxoHebe3neyHux npea-

LLIBnake ob6CTEXEHHS BENUKMX TEPUTOPIN, BUSIBIIEHHS 3 BUCOKOI TOYHICTIO HEGEe3nevHux
06’ekTiB. 3HanaeHi MiHn, 6oenprnacy ByayTe NO3HAYEHi Ha kapTax Ana noganbLoi yTunisawii.

TexHonorisa «[ncTaHuiiHe 3HaxomMxeHHsi BUOyxoHebe3neyHux npegmeTiB» Ha 6asi Br1JIA 3
nNpunagoMm MynbCcyto4oro enekTpomarHiTHoro 3oHayBaHHs (NMEM3) ta LEMI-026 ycnilwHo npon-
Luria nonepefHi NonboBi BUNpobyBaHHS.

TexHOmMoris BU3HaYeHHs TepuTtopii BUByxoHebe3neyHnx NnpeaMeTiB 3acHOBaHa Ha AMHAMIY-
HomMy BaratonapameTpuyHomy meTogi [MEM3 Ta marHiTomeTpii — 30HA4yBaHHS pasoM i3 aHani-
30M BUMPOMiHIOBaHb JTOKanbHUX aHOMarii NoLIyKoBUX 06’€KTIB, LU0 A03BOMSE QUCTAHLINHO
[ocnigkyBaTtn isnyHi NOKa3HUKN TepUTOPIN BMOYXOHE6Ee3NeYHNX NpeaMeTiB 3 BU3HA4YEHHAM
IXHBOT NPOCTOPOBOI MoKaLyji.

Lle npvHUMNoBo HOBUIA NiaXid, L0 [O3BONSE ONEPATUBHO B AUCTAHLINHOMY PEXUMI 3 BUKO-
puctaHHam BIMJTA npoBoguTy AocnioeHHs No BUSBIEHHIO NokaLlii BUOyxoHebe3neyHnx npea-
METIB Ta micns o6pobku AaHuX HagaBaTy KapTy 3HaXOOXKeHHS BUOyxoHebe3rneyHx npeamerTiB
3 NPUB’A3KOI A0 cUcTeMU koopanHaT GPS Ta BU3HaYeHHS MOXIUBUX MMUOUH 3ansiraHHs BUBY-
' XOHebe3nevyHnx NpegmMeriB.
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