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У роботі розглянуто можливості застосування моделі глибинного навчання YOLOv5s у задачі автоматизації процесу 
детектування поверхневих дефектів на друкованих платах. Сучасні друковані плати виготовляються у великих обсягах і 
містять значну кількість елементів. Технологічний процес виготовлення друкованих плат є складним, що підвищує ймо-
вірність виникнення дефектів розведення плати, таких як короткі замикання, розриви, «укуси миші» тощо. Дані дефекти 
є поверхневими та можуть бути виявлені за допомогою візуально-оптичного контролю. У порівнянні з іншими методами 
візуально-оптичний легше піддається автоматизації. Доведено, що перспективним є застосування моделей глибинного 
навчання для автоматизації процесу виявлення об’єктів на зображеннях. Сучасні нейронні мережі можуть автоматично 
з високою достовірністю детектувати поверхневі дефекти на зображеннях друкованих плат. У статті розглянуто клас 
моделей YOLO. Встановлено, що модель YOLOv5 має кращі показники швидкодії та достовірності розпізнавання, ніж 
попередні модифікації. У даному дослідженні реалізовано та навчено модель YOLOv5s для перевірки ефективності 
роботи даної мережі в задачі автоматизованого детектування поверхневих дефектів друкованих плат. Для навчання вико-
ристовувався відкритий набір даних «PCB Defects». Проведено якісний та кількісний аналіз ефективності роботи навченої 
мережі на тестовому наборі даних. Встановлено, що мережа здатна детектувати поверхневі дефекти друкованих плат з 
достовірністю 92,5 % за показником mAP50. Додатково проаналізовано результати розпізнавання різних класів дефектів 
і надано рекомендації щодо подальшого вдосконалення системи. Зокрема, перспективним є застосування аугментації 
навчальних даних і використання складнішої архітектури моделі глибинного навчання. Бібліогр. 15, табл. 2, рис. 4.
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Вступ. Автоматизація виробництва електро-
нних модулів є важливою складовою у сучасному 
виготовленні радіоелектронної апаратури. Забезпе-
чення якості та надійності електронних модулів є 
ключовим етапом цього процесу, а своєчасне вияв-
лення дефектів є надзвичайно важливим завданням. 
Наслідком встановлення несправних електронних 
плат у прилади може стати підвищення загальних 
витрат на виробництво та сервісне обслуговування 
радіоелектронної апаратури, а також можливе трав-
мування кінцевого користувача. Тому раннє вияв-
лення дефектів є надзвичайно критичним і має ве-
лике значення для забезпечення бездоганної якості 
та безпеки використання електронних пристроїв.

У сучасних умовах спостерігається тенден-
ція до зменшення розмірів електронних модулів і 
компонентів для отримання більшої компактності 
пристроїв, в яких вони будуть використовуватись. 
Ще одним важливим фактором є значне зростан-
ня обсягів виробництва електронних пристроїв. У 
зв’язку з цим, виникає необхідність використан-
ня новітніх методів автоматизації процесу контр-
олю дефектів друкованих плат. З точки зору опти-
мального поєднання інформативності, швидкодії 
та простоти автоматизації, одним із найперспек-

тивніших методів виявлення дефектів друкованих 
плат є візуально-оптичний контроль.

Візуально-оптичний контроль забезпечує мож-
ливість виявлення широкого спектру поверхневих 
дефектів, таких як пошкодження компонентів, не-
правильне розташування або з’єднання, дефекти 
паяння та багато інших. Цей метод дозволяє отри-
мувати об’єктивні результати, що зменшує вплив 
людського фактору. Використання комп’ютерного 
зору, алгоритмів обробки зображень і машинного 
навчання дозволяє автоматизувати процес контр-
олю з високою швидкістю та достовірністю [1]. 
Завдяки цьому метод ефективно використовується 
у задачах контролю якості друкованих плат навіть 
за великих обсягів виробництва.

Серед методів комп’ютерного зору одним із 
найперспективніших є використання моделей 
глибинного навчання. Глибокі нейронні мережі 
можуть досягати високих рівнів достовірності у 
виявленні об’єктів на зображеннях [2]. Завдяки 
здатності нейронних мереж вивчати складні па-
терни та залежності, вони ефективно впораються 
із виявленням навіть невеликих і складних дефек-
тів, які може бути важко визначити за допомогою 
традиційних методів.
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Аналіз стану проблеми. Друковані плати виго-
товляються за допомогою спеціальної технології. 
Спочатку проектується схема, яка включає компо-
ненти, з’єднувальні шляхи та інші елементи. Цей 
проект потім переноситься на базовий матеріал, 
яким зазвичай є полімерна плата. Даний процес 
дозволяє створити фізичну основу для компонен-
тів і дротів. Після перенесення схеми на базовий 
матеріал проводиться ряд операцій для створення 
друкованої плати. Один з етапів – нанесення шарів 
міді на плату. Шари міді утворюють провідні до-
ріжки, які забезпечують електричне з’єднання між 
компонентами. Після нанесення міді плату підда-
ють процесу експонування, що дозволяє сформу-
вати контури шляхів і площадок за допомогою фо-
точутливого матеріалу та масок [3].

Після експонування та видалення зайвих ша-
рів міді плата проходить через травильні розчи-
ни, які видаляють непотрібні частинки міді. Цей 
процес дозволяє сформувати чіткі контури шляхів 
і площадок, забезпечуючи належну функціональ-
ність друкованої плати. Після травлення прово-
дяться інші види обробки, такі як монтаж отво-
рів для компонентів, нанесення захисного шару та 
покриття плати припоєм. Ці кроки дозволяють за-
безпечити захист від корозії, підвищити міцність і 
додати довговічності до друкованої плати.

Під час виробництва, монтажу та використан-
ня друкованих плат можуть виникати різні види 
дефектів, які можуть впливати на їхню функціо-
нальність і надійність. Дефекти провідників є од-
ними з найпоширеніших проблем на друкованих 
платах. Основними видами дефектів провідників 
є коротке замикання, розрив, «укус миші», шпора, 
зайва мідь, відсутність отвору [4]. Оскільки дані 
дефекти є поверхневими, їх можна виявити за до-
помогою візуально-оптичного контролю. Прикла-
ди зображень деяких із перелічених видів дефектів 
з відкритого набору даних [5] показані на рис. 1.

Візуально-оптичний контроль має важливу пе-
ревагу – простоту автоматизації процесу. Завдя-
ки використанню комп’ютерного зору, алгоритмів 
обробки зображень і машинного навчання, можна 
розробити програмне забезпечення, яке здатне ав-

томатизовано аналізувати зображення друкованих 
плат і виявляти наявність дефектів. Це дозволяє 
значно зменшити залежність від людського фак-
тору, підвищити швидкість і точність контролю, а 
також знизити витрати на ручну роботу.

Основний принцип методів глибокого навчан-
ня полягає в тому, що нейронна мережа навча-
ється на великому наборі зображень друкованих 
плат, які вже мають позначення щодо наявності 
або відсутності дефектів та їх положення. Після 
завершення процесу навчання модель може авто-
матично аналізувати нові зображення та викону-
вати детектування дефектів. Глибокі нейронні ме-
режі можуть бути використані для різних завдань 
виявлення дефектів на друкованих платах, таких 
як виявлення візуальних аномалій, класифікація 
дефектів, детектування дефектів і сегментація де-
фектних областей.

Отже, нейронні мережі є потужним інструмен-
том для виявлення дефектів на друкованих платах. 
Вони можуть вивчати складні залежності, автома-
тично визначати діагностичні ознаки, працювати 
з великими обсягами даних. Це дозволяє в зна-
чній мірі автоматизувати процес контролю. Вико-
ристання нейронних мереж дозволяє досягти ви-
сокої точності та надійності виявлення дефектів, 
сприяє прискоренню процесу контролю та зни-
женню витрат у виробництві.

Автори [6] детально розглядають проблеми 
контролю якості друкованих плат і пропонують 
методи автоматизованого оптичного контролю 
для виявлення дефектів. Робота розпочинається 
з огляду наявних методів контролю дефектів на 
друкованих платах та їхніх обмежень. Вона пока-
зує, що традиційні методи, такі як візуальний ог-
ляд, мають обмежену ефективність і можуть бути 
витратними та займати багато часу. Тому автори 
пропонують використовувати автоматизовані сис-
теми оптичного контролю на базі нейронних ме-
реж для покращення якості та швидкості процесу 
контролю дефектів.

Автори [7] стверджують, що через складність 
умов виробництва друкованих плат більшість по-
передніх робіт все ще використовують традиційні 

Рис. 1. Приклади поверхневих дефектів друкованих плат: а – коротке замикання; б – розрив; в – «укус миші»
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алгоритми обробки зображень для автоматизова-
ного виявлення дефектів друкованих плат. Вони 
запропонували вдосконалений підхід до виявлен-
ня дефектів друкованої плати шляхом вивчення 
глибоких дискримінантних ознак. Це значно змен-
шило високі вимоги до великого набору даних для 
методу глибокого навчання. Результати показують 
кращу продуктивність у класифікації дефектів, 
ніж інші традиційні методи, засновані на ручному 
виявленні ознак. За словами авторів, запропонова-
ний метод має найвищий показник «mean Average 
Precision» (mAP) на рівні 99,59 %, що на 8 % пе-
ревищує другий за ефективністю метод, який ба-
зується на комбінації Alexnet і SVM. Таке значне 
зростання демонструє високу ефективність гли-
бокого навчання в задачах виявлення поверхневих 
дефектів друкованих плат. Проте у даній роботі 
мережа навчалася на штучно створених навчаль-
них зображеннях. Тому при реальному застосу-
ванні показники достовірності контролю можуть 
відрізнятись.

У [8] стверджується, що традиційні алгорит-
ми, яким заважає неефективність і обмежена точ-
ність, не відповідають вимогам сучасних стан-
дартів. На відміну від них, алгоритми виявлення 
дефектів друкованих плат, засновані на глибоко-
му навчанні, демонструють підвищену достовір-
ність та ефективність. Це додатково підкріплю-
ється їх здатністю навчатись і розпізнавати нові 
типи дефектів. У дослідженні наведено комплек-
сний аналіз алгоритмів виявлення дефектів друко-
ваних плат на основі машинного зору, який охо-
плює сфери машинного та глибинного навчання. 
Автори зазначають, що впровадження безкоштов-
них наборів даних для виявлення дефектів дру-
кованих плат покращує можливості для оцінки 
ефективності алгоритмів. Згідно з дослідження-
ми, в даний час достовірність виявлення та пра-
вильної класифікації дефектів може перевищува-
ти 95 % mAP при «Intersection over Union» (IoU) 
на рівні 0,5. З метою потенційного покращення 
результатів автори визначили перспективні на-
прямки майбутніх досліджень для вирішення іс-
нуючих проблем у задачах автоматизації вияв-
лення поверхневих дефектів друкованих плат. За 
результатами досліджень, серед існуючих моде-
лей глибинного навчання найкращу ефективність 
детектування дефектів друкованих плат демон-
струє сімейство моделей YOLO.

У [9] для контролю якості друкованих плат 
пропонується алгоритм глибокого навчання, за-
снований на використанні моделі «You Look Only 
Once» (YOLO). У запропонованому методі ква-
ліфіковані інженери з контролю якості спочат-
ку використовують відеоінтерфейс для запису та 
маркування дефектних друкованих плат. Потім ці 

дані використовуються для навчання базової мо-
делі YOLO для виявлення поверхневих дефектів. 
У цьому дослідженні було використано 11000 на-
вчальних зображень. Запропонована авторами 
нейронна мережа складається з 24 згорткових і 2 
повнозв’язних прошарків. Розглянута модель до-
сягла достовірності виявлення дефектів на рів-
ні 98,79 % за показником mAP. Такий результат 
підтверджує високу ефективність даних моделей. 
Проте розглянута авторами архітектура мережі на 
даний час є застарілою. Тому існує необхідність 
дослідження сучасніших модифікацій YOLO.

У [10] також стверджується, що традиційний 
метод ручного виявлення дефектів друкованих 
плат може не відповідати необхідним виробни-
чим стандартам через високий рівень помилок. У 
цій роботі автори пропонують вдосконалений ал-
горитм, заснований на використанні YOLOv4. У 
дослідженні використовується набір даних про 
дефекти друкованих плат, опублікований Лабора-
торією інтелектуальних роботів Пекінського уні-
верситету, який містить велику кількість зобра-
жень різних типів дефектів, що значно підвищує 
надійність моделі. Автори аналізують розподіл 
ознак структурного шару CSPDarkNet53 і розпо-
діл розмірів дефектів у наборі даних. На етапі по-
передньої обробки та введення даних зображення 
автоматично поділяється відповідно до середньо-
го розміру дефекту на зображенні. Таким спосо-
бом збільшується ймовірність того, що ділянка 
містить зображення дефекту. Експериментальні 
результати показують, що покращений алгоритм 
на основі YOLOv4 має показник mAP на рівні 
96,88 %.

Незважаючи на переваги, дослідники відзнача-
ють деякі виклики та обмеження методів глибин-
ного навчання для контролю дефектів друкованих 
плат. Наприклад, це необхідність наявності вели-
кого обсягу попередньо оброблених зображень 
дефектів для навчання моделей, а також важкість 
управління різноманітністю та репрезентативніс-
тю дефектів.

У цілому, автоматизований візуально-оптичний 
контроль з використанням моделей глибинного 
навчання є потужним інструментом для виявлен-
ня поверхневих дефектів на друкованих платах. 
Враховуючи швидкий прогрес у сфері машинного 
навчання, можна очікувати подальшого розвитку 
цього підходу для контролю дефектів друкованих 
плат. Одним із перспективних напрямів дослі-
джень є використання моделей сімейства YOLO. 
Саме ці моделі демонструють найкращі результати 
на різних наборах навчальних даних. Особливий 
інтерес становить модифікація YOLOv5, ефектив-
ність якої в задачах автоматизованого детектуван-
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ня дефектів друкованих плат на даний момент не 
була достатньо висвітлена в наукових публікаціях.

Постановка задачі. Метою даного досліджен-
ня є аналіз ефективності застосування нейронної 
мережі YOLOv5 при автоматизованому виявленні 
поверхневих дефектів на зображеннях друкованих 
плат. Такий підхід дозволить в автоматизованому 
режимі виявляти місце розташування дефектів і 
проводити класифікацію за типом. У реальній сис-
темі зображення об’єкту контролю надходять до 
блоку інтелектуального цифрового опрацювання 
зі спеціальної камери, встановленої на виробничій 
лінії або безпосередньо над виробом. Зображен-
ня в автоматичному режимі опрацьовуються ней-
ронною мережею. На виході нейромережевого мо-
дуля отримується зображення, на якому дефекти 
виділяються в рамку та класифікуються за типом.

Опис нейромережевої моделі. YOLO – це 
архітектура нейронних мереж для детектування 
об’єктів і класифікації, яка має значний прогрес 
у швидкості та точності порівняно зі своїми попе-
редниками. Одна з головних переваг даної моде-
лі полягає в тому, що вона має високу швидкість 
обробки зображень. Це дозволяє використовувати 
її для роботи в реальному часі на мобільних при-
строях. Крім того, YOLO показує високу точність 
виявлення об’єктів на різних наборах даних. Базо-
ва версія архітектури YOLO описана в [11].

Проте у початкової версії YOLO також є дея-
кі недоліки. Наприклад, архітектура може мати 
проблему з виявленням малих об’єктів або об’єк-
тів, форма яких може змінюватись. Також можуть 
виникати проблеми з локалізацією об’єктів, осо-
бливо коли вони перекриваються або мають схо-
жі ознаки. Тому дана модель має велику кількість 
модифікацій, які покращують її ефективність.

YOLOv5 (You Only Look Once version 5) є онов-
леною версією алгоритму YOLO, яка була представ-
лена в 2020 р. [12]. YOLOv5 має декілька розмірів 
моделей, таких як YOLOv5s, YOLOv5m, YOLOv5l 
та YOLOv5x, які відрізняються за кількістю про-
шарків та обчислювальною потужністю. Напри-
клад, модель YOLOv5x має близько 88 мільйонів 
параметрів. Узагальнену архітектуру YOLOv5 опи-
сано в [13] та показано на рис. 2.

YOLOv5 також відрізняється високою точ-
ністю виявлення об’єктів. Наприклад, модель 
YOLOv5x досягає близько 47 % mAP на датасе-
ті MS COCO при використанні роздільної здатно-
сті 640×640 і тренуванні протягом 300 епох. Кіль-
кість внутрішніх параметрів залежить від розміру 
моделі, від XS (14 мільйонів параметрів) до XL 
(177 мільйонів параметрів). Швидкодія теж може 
варіюватися залежно від розміру моделі.

У моделі YOLOv5 використовується функція ак-
тивації Mish, що є нелінійною функцією, яка вико-
ристовується для введення нелінійності в нейронній 
мережі. Вона визначається наступним чином:

	 ( ) tanh(softplus( ))Mish x x x= ⋅ 	 (1)
Функція активації Mish має плавний градієнт, 

що допомагає уникнути проблеми з затуханням 
градієнта, яка може виникати в інших функціях 
активації, таких як Sigmoid або ReLU. Вона також 
дозволяє зберегти більше інформації у вихідному 
сигналі, що може покращити точність моделі.

У порівнянні з YOLOv1 та YOLOv3, YOLOv5 
має кращу швидкість і точність. Вона також забез-
печує простішу та легшу використовувану архі-
тектуру, що робить її зручним варіантом для роз-
робників і дослідників. Порівняння кількісних 
характеристик різних модифікацій YOLO наве-

Рис. 2. Архітектура YOLOv5
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дено в табл. 1. Всі вказані моделі були навчені та 
протестовані на наборі даних MS COCO [14].

Узагальнюючи вищенаведене, YOLOv5 висту-
пає як кращий вибір порівняно з попередніми мо-
дифікаціями. Вона забезпечує баланс між точністю 
та продуктивністю, що робить її популярним рішен-
ням для різноманітних завдань виявлення об’єктів.

Метрики для виявлення об’єктів. Наступ-
ні метрики використовуються для порівняння та 
оцінки ефективності алгоритмів детектування 
об’єктів. Вони допомагають визначити, наскіль-
ки точно та повно виявляються об’єкти, а також 
як алгоритм справляється з різними розмірами та 
орієнтацією об’єктів. Використання цих метрик 
дозволяє оцінити якість алгоритму та порівняти 
його з аналогічними рішеннями. Найпопулярні-
шими є метрики IoU, Precision, Recall, mAP50 та 
mAP50-95 [15]. Значення усіх вказаних метрик 
може знаходитись в діапазоні 0...1, причому 1 оз-
начає ідеальний результат.

IoU (Intersection over Union) є метрикою, що 
використовується для оцінки перекриття двох об-
ластей. У контексті детектування об’єктів, IoU 
вимірює ступінь перекриття між прогнозованою 
областю (виявлений об’єкт) та опорною областю 
(ідеальною або анотованою областю об’єкту).

	

Площа перекриття
IoU

Площа об'єднання
= 	 (2)

Precision (P) вимірює, яка частка об’єктів, ви-
явлених алгоритмом, є дійсно коректними. Вона 
обчислюється як відношення кількості правильно 
виявлених об’єктів до загальної кількості об’єк-
тів, виявлених алгоритмом. Висока P означає малу 
кількість неправильно виявлених об’єктів.

	
TP

P=
TP + FP

,	 (3)

де TP – кількість правильно виявлених об’єктів; 
FP – кількість неправильно виявлених об’єктів.

Recall (R) вимірює, яка частка дійсно присут-
ніх об’єктів була виявлена алгоритмом. Вона об-
числюється як відношення кількості правильно 
виявлених об’єктів до загальної кількості дійсно 
присутніх об’єктів. Висока R означає, що алго-
ритм виявляє більшу частину об’єктів.

	
TP

R=
TP + FN

,	 (4)

де TP – кількість правильно виявлених об’єктів; 
FN – кількість пропущених об’єктів.

mAP за порогу в 50 % IoU (mAP50) вимірює 
якість класифікації виявлених об’єктів. mAP50 
означає, що об’єкт вважається правильно виявле-
ним, якщо його перекриття з прогнозованою рам-
кою (IoU) складає не менше 50 %. Вища mAP50 
вказує на кращу точність класифікації об’єктів.

(AP50 _1 AP50 _ 2 ... AP50 _ N)mAP50
N

      + + +
= ,	 (5)

де AP – середня Precision по класам.
mAP в діапазоні 50...95 % IoU (mAP50-95) ви-

мірює якість виявлення об’єктів в діапазоні IoU 
50...95 %. Вона оцінює здатність алгоритму до 
стійкого виявлення об’єктів за різних рівнів пе-
рекриття. Вища mAP50-95 вказує на кращу стій-
кість алгоритму до зміни розмірів та орієнтації 
об’єктів.

50 95
(AP50 - 95_1 AP50 - 95_ 2 ... AP50 - 95_ N)

N

mAP

      

− =
+ + +

= ,	(6)

Опис параметрів навчання моделі. Для нав-
чання нейронної мережі використано відкритий 
набір даних «PCB defects». Початковий набір да-
них складається з 1386 зображень, які відобра-
жають 6 типів дефектів на друкованих платах: 
відсутній отвір, «укус миші», розрив ланцюга, за-
микання, шпора та паразитна мідь. Кожен тип де-
фекту рівномірно представлений в наборі даних, 
що дозволяє виконувати різноманітні завдання, 
пов’язані з детектуванням дефектів. Набір даних 
детально описаний в [5].

Проте початкові зображення з зазначеного на-
бору мають занадто високу роздільну здатність. 
Тому було вирішено розділити кожне зображення 
на частини розміром 600×600 пікселів. Кінцевий 
набір для навчання містить 9920 зображень, тоді 
як набір для тестування містить 2508 зображень.

Для реалізації нейромережі використовується 
фреймворк PyTorch, який є одним з найпопуляр-
ніших і найпотужніших інструментів для розроб-
ки та навчання нейромереж. PyTorch забезпечує 
гнучкість і простоту в роботі з тензорами, що 
дозволяє легко будувати, тренувати та валідувати 
нейромережеву модель.

Тренування моделі YOLOv5s було здійснене 
з використанням наступних параметрів: розмір 
вхідного зображення – 416×416, розмір батчу – 
16, кількість епох – 300, ваги попередньо навченої 
моделі – YOLOv5s на наборі MS COCO. Інші гі-
перпараметри залишено за замовчуванням для ба-
зової мережі YOLOv5.

Графіки навчання наведено на рис. 3. Можна 
зробити висновок, що навчання завершено успіш-
но, ознак перенавчання немає.

Аналіз результатів. Приклади результатів ро-
боти навченої мережі для детектування дефектів на 
зображеннях із тестового набору показано на рис. 4. 

Таблиця 1. Порівняння модифікацій YOLO
Параметр YOLOv1 YOLOv3 YOLOv5

Швидкодія 45...60 FPS 20...30 FPS 20...40 FPS
Внутрішні 
параметри 45,0M 61,0M 85,0M

mAP 63 % 57 % 70 %
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Можна помітити, що мережа здатна успішно вияв-
ляти дефекти різних класів і розмірів. У тому числі, 
успішно розпізнають навіть невеликі за площею де-
фекти. Оскільки зображення друкованих плат міс-
тять багато різноманітних структурних елементів, 
пошук дефектів вручну зайняв би значний час та 
потребував би великої уваги та досвіду оператора. 
Натомість, швидкість опрацювання одного зобра-
ження нейронною мережею склала 14,7 мс.

Оцінка роботи нейронної мережі включає та-
кож кількісні метрики. Результати кількісної оцін-
ки ефективності моделі на тестовій множині наве-
дено в табл. 2.

Модель YOLOv5s продемонструвала високу 
ефективність у виявленні об’єктів на зображен-
нях. Загальна P становить 0,941, що означає, що 
більшість виявлених об’єктів є правильними. Од-
нак, R має значення 0,894, що свідчить про те, що 

деякі об’єкти можуть бути пропущені або недо-
статньо виявлені.

Серед конкретних класів дефектів пропущений 
отвір демонструє високі P = 1,000 та R = 0,997, 
що вказує на ефективну здатність моделі виявля-
ти цей тип дефекту. Схожі показники спостеріга-
ються для класу «коротке замикання» з P = 0,989 і 
R = 0,969. Ці результати підтверджують ефектив-
ність моделі в розпізнаванні цих конкретних кла-
сів дефектів.

У той же час, деякі класи, такі як розрив, шпо-
ра та надлишкова мідь, показують нижчі значення 
P та R. Наприклад, розрив має значення P = 0,838 
і R = 0,800. Це може вказувати на те, що модель 
може потребувати додаткового навчання або опти-
мізації для виявлення цих типів дефектів.

Крім того, метрики mAP50 та mAP50-95 та-
кож вказують на загальну достовірність класифі-

Рис. 3. Графіки процесу навчання

Рис. 4. Приклади детектування різних класів дефектів

Таблиця 2. Результати тестування моделі
Клaс дефекту Кількість зразків P R mAP50 mAP50-95

Всі 596 0,941 0,894 0,925 0,459
Пропуск отвору 105 1,000 0,997 0,995 0,561

«Укус миші» 104 0,894 0,888 0,918 0,450
Розрив 100 0,838 0,800 0,884 0,411

Коротке замикання 90 0,989 0,969 0,981 0,487
Шпора 98 0,953 0,829 0,861 0,424

Надлишкова мідь 99 0,970 0,879 0,910 0,424
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кації дефектів. Значення mAP50 становить 0,925, 
що свідчить про хорошу здатність моделі класи-
фікувати об’єкти при IoU = 50 %. Однак, значення 
mAP50-95 дорівнює 0,459. Це означає, що в моде-
лі зі збільшенням IoU доля правильних класифіка-
цій знижується.

Враховуючи якісну оцінку, яка показує гарну 
якість виявлення об’єктів на зображеннях, і кіль-
кісну оцінку, що вказує на швидкодію та ефектив-
не використання ресурсів, можна зробити висно-
вок про високу ефективність роботи нейронної 
мережі YOLOv5s у детектуванні поверхневих де-
фектів на зображеннях друкованих плат.

На основі наведених даних також можна запро-
понувати кілька шляхів для подальшого розвитку 
автоматизованих систем детектування поверхне-
вих дефектів друкованих плат. Першим напрямом 
є використання потужніших моделей. Варто роз-
глянути можливості використання сучасніших ар-
хітектур нейронних мереж, які мають високу точ-
ність виявлення об’єктів на стандартних наборах 
даних, таких як MS COCO. Потенційно ці моделі 
можуть забезпечити кращу якість детектування та 
здатність розпізнавання ширшого спектру об’єктів.

Ще одним напрямом для подальших дослі-
джень є аугментація даних. Використання різно-
манітних методів аугментації дозволить розшири-
ти навчальний набір даних і покращити здатність 
моделі до узагальнення та розпізнавання дефектів 
у різних умовах зйомки.

Наостанок, важливим завданням є оптиміза-
ція гіперпараметрів обраної моделі глибинного 
навчання. Варто провести додаткові експеримен-
ти з дослідження впливу batch size, активаційних 
функцій, бекбонів та інших параметрів на ефек-
тивність детектування дефектів. Це допоможе 
знайти оптимальні за показником достовірності 
контролю значення, які забезпечать кращу якість 
виявлення дефектів і швидкодію моделі.

Вибір конкретних шляхів удосконалення ме-
тоду автоматизованого детектування поверхневих 
дефектів друкованих плат повинен залежати від 
контексту, ресурсів і цілей розробки. На резуль-
тат впливатимуть умови зйомки, характеристики 
об’єкту контролю, особливості архітектури моделі 
глибинного навчання тощо.
Висновки

У роботі проведено детальний аналіз ефектив-
ності автоматизованого детектування поверхневих 
дефектів друкованих плат із використанням ней-
ронної мережі YOLOv5. Існуючі дослідження під-
тверджують актуальність використання методів 
штучного інтелекту для автоматизації опрацюван-
ня даних візуально-оптичного контролю друкова-
них плат. Порівняно з попередніми версіями, мо-

дифікація YOLOv5 має підвищену швидкодію та 
достовірність результатів роботи.

Розглянутий метод автоматизованого виявлення 
поверхневих дефектів друкованих плат на основі 
нейронної мережі YOLOv5 показав високу ефек-
тивність. Мережа здатна виявляти навіть дріб-
ні дефекти та класифікувати їх з достовірністю 
mAP50 = 92,5 %. Результати дослідження вказують 
на потенціал системи для використання в промис-
лових умовах. Потрібно також врахувати, що мо-
дель навчалась на зображеннях, які були отримані 
камерою з роздільною здатністю 8 МП. Мінімаль-
ний розмір дефектів, які модель здатна виявити, 
залежить від великої кількості факторів, таких як 
умови зйомки, чіткість зображення, масштаб моде-
лі, обрані гіперпараметри моделі тощо.

Розглянута модель YOLOv5s найкраще розпіз-
нає такі критичні дефекти, як пропуск отвору та 
коротке замикання. Проте важливий дефект типу 
«розрив» виявляється з нижчою достовірністю. 
Це можна пояснити візуальною подібністю де-
фектних розривів і необхідних розривів доріжок, 
які передбачені дизайном плати. З тих самих при-
чин можуть недостовірно розпізнаватись дефекти 
типу «надлишкова мідь». З найнижчою достовір-
ністю розрізняється дефект «шпора», однак да-
ний вид дефектів за нормальних експлуатаційних 
умов не має значного впливу на надійність роботи 
плати. В цілому, розглянута система лише допома-
гає автоматизовано виявити дефекти. Кінцеве діа-
гностичне рішення щодо їх критичності та впливу 
на стабільність роботи плати має прийматись ква-
ліфікованим фахівцем.

Автоматизація візуально-оптичного контро-
лю друкованих плат залишається актуальним на-
прямом досліджень. Подальший розвиток нових 
алгоритмів обробки зображень, використання 
штучного інтелекту та вдосконалення апаратного 
забезпечення можуть помітно покращити швид-
кість, точність і надійність процесу контролю. На 
даний момент також відомі новітні модифікації 
YOLOv7 та YOLOX, які потребують додаткового 
вивчення у майбутньому.
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In the paper, we consider the possibilities of applying the YOLOv5s deep learning model to the task of automating the process 
of detecting surface defects on printed circuit boards. Modern printed circuit boards are manufactured in large volumes and 
contain a signifi cant number of elements. The manufacturing process of printed circuit boards is complex, which increases 
the likelihood of board wiring defects, such as short, open circuits, mouse bites, etc. These defects are superfi cial and can be 
detected by visual and optical inspection. Compared to other methods, the visual-optical inspection is easier to automate. It is 
proven that it is promising to use deep learning models to automate the process of detecting objects in images. Modern neural 
networks can automatically detect surface defects in printed circuit board images with high reliability. The paper considers the 
YOLO class of models. It is established that the YOLOv5 model has better performance and recognition accuracy than previous 
modifi cations. In this study, the YOLOv5s model was implemented and trained to test the eff ectiveness of this network in the 
task of automated detection of surface defects on printed circuit boards. The open «PCB Defects» dataset was used for training. 
A qualitative and quantitative analysis of the performance of the trained network on a test dataset was carried out. It was found 
that the network can detect surface defects of printed circuit boards with 92.5 % reliability in terms of mAP50. Additionally, 
the results of the recognition of diff erent classes of defects are analyzed and recommendations for further improvement of the 
system are given. In particular, it is promising to apply augmentation of training data and use a more complex architecture of 
the deep learning model. 15 Ref., 2 Tabl., 4 Fig.
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 Вперше в історії людства супутник передав на Землю сонячну енергію з космосу
Команда дослідників використовувала пристрій, який представляє невеликий су-

путник, здатний збирати сонячну енергію за допомогою фотоелектричних елементів і 
перетворювати її в радіочастотну енергію за допомогою антенних решіток.

Потім супутник синтезував промінь радіочастотної енергії і передав його на Землю, 
де приймач і перетворювач, розташований на даху лабораторії в Каліфорнійському тех-
нологічному інституті, вловив і перетворив сигнал на постійний струм.

Кінцева мета розробників – створення мережі супутників, які зможуть передавати 
на Землю енергію, достатню для забезпечення 10000 домогосподарств. Однак до цього 
ще далеко, оскільки поточний експеримент зафіксував лише частину енергії, що гене-
рується супутником.

Космічна сонячна енергетика – це багатообіцяюча концепція, яка має на меті вико-
ристати неосяжну і безперебійну сонячну енергію, доступну в космосі, і доставити її на 
Землю, де вона може бути використана для промисловості, домогосподарств та інших цілей.

На відміну від наземних сонячних панелей, на роботу яких впливають погода, пори року та нічний час доби, орбітальні 
сонячні панелі можуть генерувати енергію безперервно, якщо вони орієнтовані на сонце. 


