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Пропонується система діагностики дорожнього покриття, в основі роботи якої лежить процес опрацювання зображень 
дефектів, які були отримані у видимому та інфрачервоному діапазонах спектру. До складу системи входять ходові лабо-
раторії на автомобільному шасі, які збирають дані від камер, а також підсистеми обробки зображень і підтримки прий-
няття рішень. Підсистема обробки зображень забезпечує перетворення отриманих зображень у видимому та інфрачер-
воному спектрах до формату, придатному для їх комплексування (злиття). Для здійснення операції комплексування було 
обрано метод злиття зображень з адаптивним визначенням ваг, який реалізовується нейронною мережею. При побудові 
даної нейронної мережі було використано принцип мультимодальної обробки, де для зображення кожної модальності 
використовуються свої згорткові шари для виділення ознак, які оцінюються повнозв’язними шарами для визначення 
вагових коефіцієнтів. Після завершення процедури комплексування отримане зображення передається на підсистему 
підтримки прийняття рішень, яка класифікує дефекти та встановлює їх геометричні розміри. Для визначення розмірів 
використовується згорткова нейронна модель, що реалізує процедуру сегментації зображень. У механізмі логічного 
висновку на основі моделі подання знань, отриманих з бази знань, робиться висновок щодо рівня дефектності ділянки 
дороги. Кінцевим елементом підсистеми є програмне забезпечення з інтерфейсом користувача, на який виводиться 
добута інформація з минулих кроків, паспорт дороги, нормативні акти, інформація про минулі ремонтні роботи та дані 
про бюджетне забезпечення. Бібліогр. 15, табл. 1, рис. 7.
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Вступ. В умовах стрімкого розвитку тран-
спортної інфраструктури та збільшення наванта-
ження на дорожнє покриття автоматизовані систе-
ми діагностики набувають особливого значення. 
Ці системи дозволяють оперативно та точно оці-
нювати стан дорожнього покриття, значно підви-
щуючи безпеку дорожнього руху та ефективність 
управління дорожньою інфраструктурою.

Автоматизація діагностики дорожнього по-
криття також сприяє значному зниженню витрат. 
Традиційні методи діагностики часто вимагають 
значних трудових і фінансових ресурсів. Автома-
тизовані системи навпаки дозволяють здійснюва-
ти швидкий і точний аналіз великих ділянок до-
роги без потреби у великих командах інспекторів. 
Це не лише знижує прямі витрати на діагностику, 
але й підвищує ефективність планування ремонт-
них робіт, зменшуючи ризик виникнення несподі-
ваних проблем та аварій на дорогах [1].

Враховуючи сучасні екологічні виклики, ав-
томатизовані системи діагностики також відігра-
ють роль у сталому розвитку. Швидке виявлення 
та усунення дефектів дорожнього покриття спри-
яє зменшенню вуглецевого сліду, оскільки покра-
щення стану доріг знижує витрати пального та 
емісії від транспортних засобів.

Інтеграція автоматизованих систем діагностики 
з іншими смарт-технологіями, такими як інтелек-
туальні транспортні системи (ITS), відкриває нові 

можливості для створення єдиної, ефективної інфра-
структури. Це дозволяє не тільки керувати поточним 
станом доріг, але й прогнозувати майбутні потреби в 
обслуговуванні, оптимізувати трафік і підвищувати 
загальну ефективність транспортної системи.

У контексті автоматизованих систем діагнос-
тики дорожнього покриття основні виклики поля-
гають у забезпеченні точності даних, ефективнос-
ті обробки великих обсягів інформації та впливі 
зовнішніх умов на якість сенсорних вимірювань 
[2–4]. Точність даних є критичною для правиль-
ної оцінки стану доріг, уникнення недооцінки або 
переоцінки дефектів [5]. Обробка великих баз да-
них вимагає розробки складних алгоритмів, які 
можуть ефективно аналізувати та інтерпретувати 
складні дані. Змінні зовнішні умови, такі як освіт-
лення та погода, можуть істотно впливати на ро-
боту сенсорів, вимагаючи адаптивності системи 
до різних умов.

Аналіз останніх досліджень і публікацій. У 
процесі розвитку обчислювальних чіпів та різно-
маніття архітектури нейромережевих моделей ча-
сто головним чинником, що впливає на загальну 
якість процесу, стає якість та інформативність да-
них [6]. Це обумовлює використання додаткових 
каналів взаємодії з об’єктом дослідження. При-
кладом такого процесу є мультисенсорна діагнос-
тика [7, 8]. Доведено, що використання додатко-
вих джерел інформації, отриманих у декількох 
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спектральних діапазонах, підвищує точність робо-
ти нейронних мереж при обробці зображень [7, 9]. 
Використання мультисенсорних методів діагнос-
тики також дає можливість застосування сучасних 
методів машинного навчання для автоматизації 
обробки та оцифрування даних [10].

Сьогодні стало актуальним інтегроване вико-
ристання камер в видимому та інфрачервоному 
спектрах [11, 12]. Таке поєднання має дати змо-
гу ліквідувати негативні фактори кожного мето-
ду завдяки позитивним параметрам іншого. Так, 
для фото у видимому випромінюванні важливо 
мати хороше освітлення, важливу роль відіграє за-
бруднення дорожнього покриття, тіні та засвічен-
ня обʼєктиву. Для інфрачервоних камер неякісне 
освітлення і короткострокові тіні не впливають 
на якість зображення, а також ми отримуємо таку 
раніше не доступну характеристику, як темпера-
тура об’єкта, що може посилити аналітичну базу. 
Однак коливання температури навколишнього се-
редовища, неоднорідність коефіцієнта випромі-
нювання та довгострокові тіні є негативними фак-
торами при тепловій діагностиці [8, 9].

Додатковою проблемою використання мульти-
сенсорних систем є необхідність обробляти кожен 
канал інформації окремо. Для того, щоб прибрати 
цей недолік, можна скористатися комплексуван-
ням (злиттям) зображень – поєднанням двох або 
більше зображень одного об’єкта з метою покра-
щення якості та інформативності результуючого 
зображення [13, 14]. Як видно з визначення, по-
зитивним ефектом комплексування є підвищення 
інформативності фінального зображення навіть в 
умовах, коли інформативність кожного початково-
го зображення низька [15]. Методи комплексуван-
ня зображень мають велике різноманіття, однак 
лідером є клас методів, заснованих на вейвлет-пе-
ретворенні [11, 12].

Метою роботи є дослідження можливостей ре-
алізації методів злиття зображень, отриманих в 
різних спектральних діапазонах, в автоматизованій 
системі діагностики стану дорожнього покриття.

Виклад основного матеріалу. В основі запро-
понованої системи діагностики лежить процес оп-
рацювання зображень дефектів, які були отримані 
у видимому та інфрачервоному діапазонах спектру.

Оцінка інформативності комплексованих зо-
бражень може бути оцінена завдяки ентропії 
Шенона:
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де p(xi) – імовірність кожного пікселя xi; n – кіль-
кість можливих значень пікселів.

Взаємна інформація визначається наступним 
чином:
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де p(x) – імовірність кожного значення пікселя зо-
браження X; p(y) – імовірність кожного значення 
пікселя зображення Y; p(x,y) – взаємна ймовір-
ність кожного пікселя зображень X і Y.

На рис. 1 показано результат злиття зображен-
ня дорожнього дефекту, отриманого у видимому 
та інфрачервоному діапазонах спектру.

Структуру системи діагностики дорожнього 
покриття, що пропонується, показано на рис. 2.

До складу системи входять ходові лаборато-
рії на автомобільному шасі, які рухаються по по-
верхні дорожнього покриття та збирають дані від 
камер видимого та інфрачервоного спектру. На 
борту лабораторії також знаходяться GPS тре-
кер і прилади для освітлення дорожньої поверх-
ні. Отримані від камер дані потрапляють на бор-
товий комп’ютер (ПК) для локального зберігання 
та передачі інформації до централізованого хмар-
ного сховища. Дані з хмарного сховища відбира-
ються в підсистему обробки зображень для їх по-
передньої обробки та для реалізації алгоритму 
комплексування.

Процес попередньої обробки двоспектральних 
зображень показано на рис. 3.

При обробці теплових зображень послідовно 
виконуються такі операції: обрізання зображен-
ня для видалення неінформативних індикаторів 
по краях, фільтрація шуму адаптивним медіанним 
фільтром, збільшення контрасту, замальовування 
неінформативного індикатора по центру зобра-
ження, реєстрація (трансформація) інфрачерво-
ного зображення відносно видимого шляхом ви-
користання методу градієнтного спуску та оцінки 
взаємної інформації. Для обробки зображення ви-

Рис. 1. Зображення дефекту дорожнього покриття: а – у ви-
димому спектрі; б – у інфрачервоному спектрі; в – комплек-
соване зображення
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димого спектра використано лише одну операцію 
– зменшення роздільної здатності.

Останнім перетворенням у підсистемі обробки 
зображень є комплексування зображень на базі вей-
влет-перетворення, яке поєднує інформаційні ха-
рактеристики зображень обох спектрів. Для здійс-
нення операції комплексування було обрано метод 
злиття зображень з адаптивним визначенням ваг. 
Алгоритм реалізації методу полягає у наступному:

1. Реалізовується вейвлет-перетворення для 
кожного зображення:
	 ( ); ( )A BW A W B= =wavelet wavelet ,	
де WA і WB – вейвлет-коефіцієнти для зображень A 
і B відповідно.

2. Для визначення вагових коефіцієнтів на ос-
нові вейвлет-коефіцієнтів використовується ней-
ронна мережа NN:
	 , ( , , )A ANN W Wα β = θ ,	
де α і β – вагові коефіцієнти для кожного вей-
влет-коефіцієнта WA і WB відповідно, θ позначає 

параметри нейронної мережі, які оптимізуються 
для максимізації інформативності результуючого 
зображення F.

Цільова функція для оптимізації інформації 
має вигляд:
	 arg max ( ; , ),MI F A Bθθ = .	

де MI(F;A,B) — взаємна інформація між резуль-
туючим зображенням F і вхідними зображеннями 
A і B.

Ця функція вимірює ефективність зберігання 
інформації у злитому зображенні, отриманому від 
вхідних зображень.

3. Злиття зображень здійснюється з викорис-
танням вагових коефіцієнтів:

	 ( , ) ( ),A BF x y W W= α ⋅ + β ⋅inverse_wavelet 	
де «inverse_wavelet» – зворотне вейвлет-перетво-
рення, яке перетворює вейвлет-коефіцієнти назад 
у просторовий домен для формування результую-
чого зображення F.

Рис. 2. Структура автоматизованої системи діагностики стану дорожнього покриття

Рис. 3. Процес обробки зображень в підсистемі
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Архітектуру нейронної мережі для методу 
злиття зображень з адаптивним визначенням ваг 
показано на рис. 4. Ця мережа складається з двох 
однакових блоків згорткових шарів для зображен-
ня кожного спектру.

Кожен блок має два згорткових шари. Перший 
шар містить 32 фільтри розміром 3×3, другий — 64 
розміром 3×3, після кожного згорткового шару ви-
конується макспулінг розміром 2×2. Завершують 
мережу три повнозв’язні шари розмірами 128, 62 
і 2 нейрони. При побудові даної нейронної мережі 
було використано принцип мультимодальної об-
робки, де для зображення кожної модальності ви-
користовуються свої згорткові шари для виділення 
ознак, після чого ознаки оцінюються повнозв’язни-
ми шарами для визначення вагових коефіцієнтів.

Після завершення процедури комплексування 
отримане зображення передається разом з коор-
динатами GPS на підсистему підтримки прийнят-
тя рішень, де зображення попередньо класифіку-
ють відповідно до типу дефекту (класифікацію 
виконує згорткова нейронна мережа), після чого 

інформацію відправляють, залежно від класу, на 
відповідну нейронну модель для встановлення ге-
ометричних розмірів дефекту дороги. Для цього 
використовується згорткова нейронна модель, що 
реалізує процедуру сегментації зображень (рис. 5).

Цей нейромережевий класифікатор, побудова-
ний для обробки та класифікації зображень, ви-
користовує глибокі згорткові нейронні мережі 
(CNN). Його структура складається з кількох ета-
пів обробки даних: попередньої обробки, кількох 
конволюційних блоків для витягування ознак, за-
лишкових блоків для збереження градієнта під 
час навчання та повнозв’язних шарів для кінцевої 
класифікації. Вхідний шар зменшує розмір зобра-
жень до 256×256 пікселів для оптимізації обчис-
лювальних ресурсів.

Основна робота нейромережі виконуєть-
ся в конволюційних блоках, де перші два 
блоки використовують фільтри 3×3 для ви-
тягування основних і детальних ознак, застосову-
ючи активацію ReLU і нормалізацію партій (Batch 
Normalization) для стабільності. Залишкові блоки 
з більшим числом фільтрів застосовують принцип 
залишкового зв’язку для покращення здатності 
до навчання. У результаті плоский шар перетво-
рює виходи конволюційних шарів у вектор, який 
передається на повнозв’язні шари, що виконують 
кінцеву класифікацію. Завершується модель ви-
хідним шаром з активацією Softmax для багато-
класової класифікації, генеруючи ймовірності для 
кожного з шести класів.

Дані GPS, комплексоване зображення, клас де-
фекту, площа дефекту записуються в базу даних 
для зберігання. У механізмі логічного висновку 
на основі моделі подання знань, отриманих з бази 
знань, робиться висновок щодо рівня дефектно-
сті ділянки дороги. Фрагмент продукційної моде-
лі подання знань для підсистеми підтримки при-
йняття рішень показано в таблиці.

Рис. 4. Архітектура нейронної мережі для реалізації методу 
злиття зображень з адаптивним визначенням ваг

Рис. 5. Архітектура згорткової нейронної мережі для класифікації дефектів дорожнього покриття
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Кінцевим елементом підсистеми є програм-
не забезпечення з інтерфейсом для користувача 
(рис. 6). Інтерфейс забезпечує зручний аналіз і 
прийняття рішення щодо проведення ремонтних 
робіт. На нього виводиться добута інформація з 
минулих кроків, паспорт дороги, нормативні акти, 
інформація про минулі ремонтні роботи та дані 
про бюджетне забезпечення. Дані щодо бюджет-
ного планування дозволять операторам врахову-
вати фінансові обмеження при прийнятті рішень 
про ремонт.

Користувач на основі наявних даних приймає 
рішення щодо ремонтних робіт. Після чого, вихо-
дячи з графіку ремонтних робіт, відправляється 
бригада усунення дефектності (підсистема ремон-
ту дорожнього покриття) і цикл повторюється.

Експериментальна перевірка роботи сис-
теми. Для перевірки ефективності роботи систе-
ми експериментально було зібрано 6000 реальних 
зображень дорожніх дефектів у двох спектраль-
них діапазонах. При експерименті використову-
валась тепловізійна камера Wintact WT3320, що 

мала роздільну здатність детектора 320×240 і те-
плову чутливість 0,07 К, які дозволяли отримува-
ти зображення при температурі повітря, вищій на 
15 ºС. На рис. 7 продемонстровані деякі з отрима-
них зображень.

Розроблена система отримала високі оцінки 
продуктивності обробки великих об’ємів даних, 
високу адаптивність до різних методів отримання 
даних за рахунок використання гнучких методів 
обробки та використанню нейронних мереж. Ком-
бінація даних двох спектрів дозволила отримати 
високу точність класифікації дефектів дорожнього 
покриття (більше 95 %) в умовах наявності інфор-
маційних завад. Такі результати дозволяють гово-
рити про високу ефективність розробленої систе-
ми діагностики дорожнього покриття.
Висновки

Запропонована автоматизована система діа-
гностики стану дорожнього покриття, яка базу-
ється на злитті зображень у двох спектральних 
діапазонах, дозволила отримати високу точність 
класифікації дефектів дорожнього покриття (біль-
ше 95 %) в умовах наявності інформаційних за-
вад. Експериментальна перевірка системи була 
реалізована з використанням реальних даних у 
кількості 6000 зображень, отриманих в оптичному 
та інфрачервоному діапазонах і яка підтвердила 
високу продуктивність обробки великих об’ємів 
даних, а також високу адаптивність до різних ме-
тодів отримання даних.

Для обробки та класифікації зображень було 
побудовано нейромережевий класифікатор, який 
використовує глибокі згорткові нейронні мережі. 
Висновок щодо рівня дефектності ділянки дороги 
генерується механізмом логічного висновку на ос-

Фрагмент продукційної моделі подання знань
Умова Висновок

Тип дефекту = тріщина загальна поперечна Характер дефекту = лінійний і коефіцієнт вагомості Kυ = 0,08 і коефіцієнт 
приведення до площі Ks = 0,15

Тип дефекту = тріщина повздовжня Характер дефекту = лінійний і коефіцієнт вагомості Kυ = 0,1 і коефіцієнт 
приведення до площі Ks = 0,1

Дефектність дорожнього покриття > 50 % Рівень дефектності = критичний

Рис. 6. Інтерфейс користувача

Рис. 7. Зображення дорожніх дефектів, отриманих експериментально
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нові моделі подання знань, отриманих із запропо-
нованої бази знань.

За рахунок використання гнучких методів об-
робки інформації та застосування нейронних ме-
реж було підвищено ефективність автоматизо-
ваного процесу діагностики стану дорожнього 
покриття.
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AUTOMATED ROAD SURFACE DIAGNOSTIC SYSTEM WITH IMAGE COMPLEXING 
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The road surface diagnostic system is proposed. The basis of the system operation is processing images of defects that were 
obtained in the visible and infrared ranges of the spectrum. The system includes running laboratories on the car chassis that 
collect data from cameras, as well as image processing and decision support subsystems. The image processing subsystem 
provides conversion of the received images in the visible and infrared spectra to a format suitable for their complexation (fusion). 
The method of image fusion with adaptive determination of weights, which is implemented by a neural network, was chosen 
for the implementation of the complexing operation. When building this neural network, the principle of multimodal processing 
was applied, where each modality is represented using its own convolutional layers to highlight features that are evaluated by 
fully connected layers to determine weighting coefficients. After the completion of the complexing procedure, the obtained 
image is transferred to the decision support subsystem, which classifies the defects and establishes their geometric dimensions. 
To determine the dimensions, a convolutional neural model is used, which implements the image segmentation procedure. In 
the mechanism of logical conclusion, based on the model of presentation of knowledge obtained from the knowledge base, a 
conclusion is made regarding the level of defectiveness of the road section. The final element of the subsystem is software with 
a user interface that displays information obtained from past steps, a road passport, regulatory acts, information on past repair 
work, and data on budget support. 15 Ref., 1 Tabl., 7 Fig. 
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