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Steady-state modes in the welding circuit during gas metal arc welding are considered. An approach is offered to evaluate
quality of the arc self-adjustment process based on the use of the error index method.
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Efficiency of control algorithms for robotic metal arc
welding significantly depends on how the character
of dynamic processes taking place in the welding cir-
cuit is allowed for during their development. The pe-
culiarity of these processes is determined by the effect
of self-adjustment of the arc, which, as is well known,
was discovered and thoroughly investigated as far back
as in the early 1940s [1]. Though there are lots of
studies dedicated to investigation of the above effect,
the issues of quality of the arc self-adjustment process
are yet insufficiently covered in literature. We can
mention only the recently published paper [2], which
uses an integral performance criterion, allowing com-
parison of the systems close in structure (the best of
them has the lowest integral estimate). The paper [2]
does not consider the issues of accuracy in the steady-
state modes, which, along with the transient process
time, is known [3—7] to be one of the main indicators
of the process quality.

Meanwhile, a smart method, described probably
for the first time in study [7] and later known as an
error index method, was suggested for analysis of ac-
curacy in steady-state modes under conditions of con-
stant, slowly varying external actions. This method
makes it possible to quite easily obtain an idea of the
steady-state processes in linear feedback systems of a
random structure directly from coefficients of the
transfer functions depending on the external actions
and their derivatives. It is shown in study [8] that
the above method, in principle, also applies to certain
classes of non-linear systems, in which the non-linear
elements are not connected by feedback circuit.

The task of this study is to investigate the steady-
state process in the welding circuit during gas metal
arc welding, and estimate accuracy of the arc self-ad-
justment process based on the error index method.

Consider the following differential equation:

(TeTsD
2 + TsD + 1)vm = ve — DH + 

1
E

 Dus, (1)

which describes, according to [9], the dynamic pro-
cesses taking place in the welding circuit.

The following designations are introduced in equa-
tion (1): ve = ve(t) – consumable electrode feed speed
relatively to the torch nozzle; vm = vm(t) – electrode
melting rate; H = H(t) – distance between the tip
of the current-conducting nozzle and free surface of
the weld pool; us = us(t) – voltage at output terminals
of the welding current source; E ≡ ∂ua/∂l – intensity
of the electric field in the arc column; ua = ua(t) –
arc voltage; l – arc length; t – current time; D =
= d/dt – differentiation operator; and Te, Ts –
time constants:

Te = 
L
R∗

;  Ts = 
R∗

EM
 . (2)

Here L is the inductance of the welding circuit;
M ≡ ∂vm/∂i is the slope of the electrode melting
characteristic at nominal values of the welding current
i; and electrode extension

R* = R + Sa — Ss, (3)

where R is the total resistance of the lead wires, elec-
trode extension and sliding contact in the torch nozzle;
Sa ≡ ∂ua/∂i; Ss ≡ ∂us/∂i is the slope of volt-ampere
characteristics of the arc and welding current source
at a nominal value of the welding current i.

Assume the following value to be a criterion of
accuracy of self-adjustment:

ε(t) = ve(t) — vm(t), (4)

which is a deviation of electrode melting rate vm(t)
from electrode feed speed ve(t).

Based on (4) and (1), it can be written down that

(TeTsD
2 + TsD + 1)ε(t) =

= (TeTsD
2 + TsD)ve(t) + DH(t) — 

1
E

 Dus(t).
(5)

Applying the Laplace transformation to (5), we
obtain

ε(p) = W1(p)ve(p) + W2(p)H(p) — W3(p)us(p), (6)

where p is the complex variable; and W1(p), W2(p)
and W3(p) are the transfer functions:
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W1(p) = 
TeTsp

2 + Tsp

TeTsp
2 + Tsp + 1

;  W2(p) = 
p

TeTsp
2 + Tsp + 1

;

W3(p) = 
E—1p

TeTsp
2 + Tsp + 1

. (7)

Since transfer functions W1(p), W2(p) and W3(p)
have no poles at the origin of coordinates, then, ac-
cording to [7], they can be expanded into power series
with regard to p. Therefore, steady-state deviation
ε∞(t) for each input action ve(t), H(t) and us(t) can
be represented as a sum of corresponding expansions

ε∞(t) = ε1∞(t) + ε2∞(t) + ε3∞(t), (8)

where

ε1∞(t) = A0ve(t) + A1Dve(t) + A2D
2ve(t) + … ;

ε2∞(t) = B0H(t) + B1DH(t) + B2D
2H(t) + … ;

ε3∞(t) = C0us(t) + C1Dus(t) + C2D
2us(t) + …  

(9)

In these expressions

An = 
1
n!

 
⎡
⎢
⎣

⎢
⎢
dnW1

dpn

⎤
⎥
⎦

⎥
⎥ p = 0;  Bn = 

1
n!

 
⎡
⎢
⎣

⎢
⎢
dnW2

dpn

⎤
⎥
⎦

⎥
⎥ p = 0;

Cn = 
1
n!

 
⎡
⎢
⎣

⎢
⎢
dnW3

dpn

⎤
⎥
⎦

⎥
⎥ p = 0,  n = 0, 1, 2, …

(10)

are the constant coefficients.
Thus, substituting coefficients An, Bn and Cn found

from formulae (10) to expansions (9), and then sum-
ming up the results, according to (8), we will obtain
the estimate of accuracy of arc self-adjustment, ε∞(t).

If, for example, in expressions (9) we don’t go
beyond the first two terms of a series, which is quite
acceptable in our case, then the approximate estimate

of accuracy ε∞∗ (t) will take a relatively simple form,
such as

ε∞
∗ (t) = TsDve + DH — 

1
E

 Dus. (11)

Numerical values of parameters Ts and E, as well
as the rate of changes in input actions ve(t), H(t) and
us(t) being known, we can easily calculate deviation
ε∞∗ (t) from formula (11), i.e. obtain the estimate of
accuracy of arc self-adjustment in each particular case
without any additional theoretical or experimental
investigations.

It can be directly seen from expression (11) that
if ve = const, H = const and us = const, then deviation
ε∞(t) in the steady-state mode equals zero. Obviously,
at ve(t) ≠ const, the lower the value of time constant
Ts, which depends, according to (2), (3), on the slope
of volt-ampere characteristics of the arc, Sa ≡
≡ ∂ua/∂i, and welding current source, Ss ≡ ∂us/∂i,
the slope of electrode melting characteristic M ≡
≡ ∂vm/∂i and intensity of the electric field in the arc
column, E ≡ ∂ua/∂l, the smaller is value of deviation
ε∞(t). It can be easily seen from (11), (2) and (3)
that the lower the value of R* = R + Sa — Ss and
higher the value of EM, the lower is the value of
deviation ε∞(t) in the steady-state mode, i.e. the
higher is the accuracy of arc self-adjustment.

As for time τ of the transient process, which is
another main characteristic of quality of self-adjust-
ment of the arc, since Ts >> Te in the welding circuit,
this time can be estimated from the following formula:

τ* = Ts ln (k), (12)

where k is the number determining the degree of de-
crease of initial deviation ε0 during desired time τ, i.e.
k = ε0/ε(t).

It is follows from formulae (12), (2), (3), in par-
ticular, that time τ of the transient process reduces
with decrease of R* and increase of EM.

Thus, formulae (11) and (12) are very convenient
for numerical estimation of the quality of the arc self-
adjustment process, which to a certain extent deter-
mines the quality of the arc welding process.

Results of computer modeling of the processes de-
scribed by differential equation (1) are shown in Fi-
gures 1 and 2. The following values of parameters of
the welding circuit and mode of arc welding are taken:
L = 4⋅10—4 H; R = 0.015 Ohm; E = 2 V/mm; M =
= 0.31 mm/(A⋅s), and Sa = 0.005 V/A.

Transient and steady-state processes ε(t) obtained
in changing of electrode feed speed ve(t) and at con-
stant H = 17 mm and us = 30 V, are shown in Figure 1.
For simplicity of verification of formula (11), the law
of change in ve(t) was set by the dependence

ve(t) = 
⎧
⎨
⎩

⎪
⎪
45,                    t < 0.5
45 + 20(t — 0.5),   t ≥ 0.5 [mm/s].

Comparison of curves 1 and 2 in Figure 1 shows
that the arc self-adjustment accuracy characterized byFigure 1. Linear change in electrode feed speed ve (a), and response

of deviation ε(t) to this change (b): 1 – Ss = —0.025; 2 – —0.045 V/A
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deviation ε(t) increases with decrease in slope Ss of
volt-ampere characteristic of the welding current
source.

Transient process ε(t) induced by a stepwise
change in distance H(t) between the tip of the cur-
rent-conducting nozzle and free surface of the weld
pool is shown in Figure 2:

H(t) = 
⎧
⎨
⎩

⎪
⎪
17,   t < 0.5
20,   t ≥ 0.5 [mm].

Voltage us was set to be equal to 30 V, and speed
ve – to 45 mm/s.

It can be seen from Figure 2 that the time of the
transient process reduces with decrease in slope Ss of
volt-ampere characteristic of the welding current
source.

To illustrate the efficiency of application of for-
mulae (11) and (12) for numerical estimation of the
arc self-adjustment quality, calculate steady-state de-
viation ε∞∗ (t) and time τ of the transient process from
these formulae for the above cases.

In case of a linear change in electrode feed speed
ve(t) (see Figure 1)

ε∞1
∗ (t) = TsDve = 

0.015 + 0.005 + 0.025
2⋅0.31

 ×

× 20 = 1.45 mm/s (curve 1);

ε∞2
∗ (t) = 

0.015 + 0.005 + 0.045
2⋅0.31

 ×

× 20 = 2.1 mm/s (curve 2).

In case of a stepwise change in distance H(t) be-
tween the tip of the current-conducting nozzle and
free surface of the weld pool (see Figure 2)

τ1
∗ = Ts ln (k) = 

0.015 + 0.005 + 0.015
2⋅0.31

 ×

× 3 = 0.17 s (curve 1);

τ2
∗ = 

0.015 + 0.005 + 0.045
2⋅0.31

 ×

× 3 = 0.31 s (curve 2).

Comparing ε∞∗ (t) and τ∗ calculated from formulae
(11) and (12) with corresponding values of ε∞ and τ
obtained by modeling (Figures 1, 2): ε∞1(t) =
= 1.45 mm/s, ε∞2(t) = 2.09 mm/s, τ1 = 0.16 s, τ2 =
= 32 s, it can be seen that they almost coincide.

Therefore, the computer modeling and the above
calculations show that estimations (11) and (12) pro-
posed in this study give a clear idea of the accuracy
and time of the transient arc self-adjustment processes.
Parameters of the welding circuit being known, it is
easy to calculate the values of ε∞∗  and τ* from formulae

(11) and (12). Moreover, having the above formulae,
the desirable indicators of the arc self-adjustment
quality can be provided by selecting certain relation-
ships between parameters of the welding circuit. Such
a necessity, in particular, arises when using the pulsed
arc welding methods [10].

We used estimations (11) and (12) in [11] for the
development of the adaptive arc sensor to provide
corrective control of robotized arc welding.
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Figure 2. Stepwise change in distance H between the nozzle and
weld pool (a), and response of deviation ε(t) to this change (b):
1 – Ss = —0.015; 2 – —0.045 V/A
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