
allows achieving the optimum geometry, satisfactory
formation and required reinforcement of the weld root.

Conducted studies showed that radiation of
Nd:YAG laser of 4.4 kW power at welding speed of
16 m/h allows making in the butt joint a root weld
with complete penetration and good formation of the
back bead.

Optimum mode of welding the root welds in the
joints of 25Kh2NMFA steel with U-shaped groove
(Figure 3, c, d) is as follows: radiation power of 4 kW;
welding speed of 16 m/h; focal distance of 200 mm;
focal point deepening to 2 mm; gas flow rate: CO2 –
20 l/min (to pool head), Ar – 10 l/min (pool tail
part); feed rate of 1.2 mm wire – 38.4 m/h.

Thus, results of experiments on laser welding of
root welds in the downhand position showed that with
the appropriate fit-up and following the welding
modes complete penetration of the weld root without
defects (pores or cracks) with good formation of the
back bead is ensured.

1. Grigoriants, A.G., Shiganov, I.N. (1988) Laser welding of
metals. Moscow: Vysshaya Shkola.

2. Shelyagin, V.D., Khaskin, V.Yu., Siora, A.V. et al. (2003)
Laser welding of thin-sheet steels using special approaches.
The Paton Welding J., 1, 39—42.

3. (2006) Machine-building: Technology of welding, soldering
and cutting. Ed. by B.E. Paton. Vol. 3. Moscow: Mashino-
stroenie.

OPTIMAL CONTROL OF FORMATION
OF WELD REINFORCEMENT

V.V. DOLINENKO, T.G. SKUBA, V.A. KOLYADA and E.V. SHAPOVALOV
E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine

Method is proposed for development of the optimal system for automatic control of formation of the weld reinforcement
with transportation lag in the feedback loop under MAG welding conditions. A dynamic model of formation of the weld
reinforcement was developed to build the optimal controller. Mathematical modelling was performed by using the
MATLAB software package. The developed control system provides a minimal duration of the process at preset limitations
of dynamics of the adjustment actions.

K e y w o r d s :  MAG welding, dynamic model, weld reinforce-
ment formation, mathematical modelling, optimal control sys-
tem, transportation lag

Achieving the optimal weld shape is one of the key
tasks in fabrication of welded structures. This is ex-
plained by the fact that at the optimal shape of the
weld reinforcement it is possible to decrease values of
the stress concentration factor and improve perform-
ance of welded structures. Moreover, the required
weld sizes allow minimising overuse of welding con-
sumables under mass production conditions. Up to
now, formation of the weld has been controlled by
using an open circuit, through setting the welding
process parameters. Peculiarities of design of the open
systems to control formation of the welds, based on
regression models, are considered in study [1]. Also,
the weld shape can be controlled by using mechanical
oscillations of the welding tool and magnetic control
of the weld pool [2]. All open methods for control of
the weld formation share one drawback, which is re-
lated to the absence of the mechanism to compensate
for external disturbances, which affect a workpiece
during the arc welding process and may lead to de-
viations of geometric parameters of the weld from the
preset values. For example, such disturbances include
ambient parameters, state of the surface and deviations
of geometric parameters of a welding object. One of
the methods to compensate for the external distur-
bances is to use the closed feedback systems for auto-

matic control of the weld formation. A promising area
of further advancement of the arc welding control
systems is development and investigation of optimal
and adaptive systems, the main advantages of which
are considered in studies [3—5]. The necessity of ap-
plying the optimal control theory methods to welding
is associated with high requirements for reliability
and durability of welded structures [6].

The purpose of this study was to develop a system
to control formation of the weld in MAG welding by
using a laser TV sensor (LTS) in the feedback circuit
to measure geometric parameters of the weld reinforce-
ment bead.

Formalise the control problem, i.e. replace the con-
trol object by a mathematical model that describes
essential peculiarities of the control problems and
goals. The process of formation of the weld bead is a
multidimensional connected control object, the be-
haviour of which can be described in first approxima-
tion by a system of first-order differential equations.
In the state space, the object equations have the fol-
lowing forms:

x = Ax + Bu + V0, (1)

y = Cx + Vo, (2)

where x is the vector of state variables of the bead
formation process (x1, x2, ..., xn)

T; u is the vector of
control actions of the welding process (u1, u2, ...,
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um)T; y is the vector of observations of geometric pa-
rameters of the bead (y1, y2, ..., yl)

T; A is the matrix
of states of the system measuring n × n; B is the matrix
of controls (n × m); C is the matrix of observations
(l × n); V0(t) is the matrix of coefficients of input
disturbances; Vo(t) is the matrix of coefficients of
observation noises; and t is the time.

Matrices V0(t) and Vo(t) are white noises with
the following probability characteristics:

M[x0] = x
__

0 (average value);

M[(x0 — x
__

0)(x0 — x
__

0)
T] = P0;

M[(V0(t) — V0
T(t′))] = Q0δ(t — t′);

M[(Vo(t) — Vo
T(t′))] = R0δ(t — t′);

M[V0(t)] = 0;  M[Vo(t)] = 0;  M[(V0(t) Vo
T(t′))] = 0,

where x0 = x(t0); Q0 and P0 are the positively semi-
definite matrices; R0 is the positively definite matrix;
δ(t — t′) is the Kronecker function; and t′ is the time
moment.

The optimality criterion, which has to be mini-
mised, is set in the form of functional

J = M[xT(tf) Fx(tf) + ∫ 
0

tf

[xT(t)Qx(t) + uT(t)Ru(t)]dt],     
(3)

where M is the mathematical expectation; F is the
matrix of boundary conditions; and Q and R are the
matrices of weighting coefficients.

The optimal control problem is formulated as fol-
lows [7]: at preset object equations (1) and (2), con-
trol limitations u(t) ∈ Ut and Ut ⊆ ℜm (where ℜm is
the m-dimensional linear space) and edge conditions
x(0) = x0 and x(tf) = 0, it is necessary to define such
a control with feedback u = u{y(τ), t0 ≤ t ≤ t}, where
t0 ≤ τ ≤ tf, at which optimality criterion (3) would
have a minimal value.

To solve the stated problem, represent the model
of a control object (CO), which is the weld formation
process, in the form of a connected system of dynamic
links. Transition functions of the links should describe
the transient processes at the CO output as precisely
as possible. Welding experiments were designed and
carried out to study the character of these processes
and, as a result, generate the a priori information on
dynamic characteristics of CO.

In the course of the experiments, the adjustment
actions were formed as deviations in voltage Ua and
welding current Iw, and welding speed vw was main-
tained at a constant level. Welding was performed at
the reverse polarity current in flat position in the
atmosphere of a mixture of shielding gases (Ar +
+ 15 % CO2). «Fronius TransPuls Synergic-5000»
was used as an arc power source, and «Fronius VR
2000» – as a wire feed mechanism. The welding ob-
ject was an 8 mm thick carbon steel plate. Electrode
wire Sv-08G2S with a diameter of 1.2 mm was used
for welding. The nominal welding parameters were as
follows: Iw 0 = 160 A; Ua 0 = 19 V and vw 0 = 7 mm/s.

The amplitude of deviations of the adjustment actions
for current was ΔIw max = 15 A, and for voltage –
ΔUa max = 2 V.

It was found as a result of the experiments that
stepwise variations of the adjustment signals lead to
spurious oscillations of the bead surface and formation
of undercuts. To prevent formation of defects in the
welds, the rate of growth/fall of the adjustment sig-
nals for voltage was limited to 1 V/s, and for welding
current – to 10 A/s. As shown by the experimental
results, the process of the weld bead formation is char-
acterised both by the dynamic behaviour and by the
presence of two different transportation lags in for-
mation of width and height of the bead.

Introduce the following designations: e and g –
width and height of the weld bead; Δe and Δg –
finite increments of width and height of the weld bead
relative to nominal values e0 and g0; ΔUa and ΔIw –
finite increments of the adjustment actions; and Ua
and Iw – actual values of the adjustment actions.
Therefore, the following equations are valid:

Ua(t) = Ua 0 + ΔUa(t);   Iw(t) = Iw 0 + ΔIw(t); (4)

e(t) = e0 + Δe(t);   g(t) = g0 + Δg(t), (5)

where ΔUa(t) < ΔUa max, and ΔIw(t) < ΔIw max.
Represent the weld bead formation model for

steady-state welding conditions in the form of a static
connected system linearised about the working point
(Ua 0, Iw 0).

Write it down in the matrix form

⎡
⎢
⎣
Δe(t)
Δg(t)

⎤
⎥
⎦
 = 

⎡
⎢
⎣
k11 k21

k12 k22

⎤
⎥
⎦
 
⎡
⎢
⎣
ΔUa(t)
ΔIw(t)

⎤
⎥
⎦
, (6)

where k11, k12, k21 and k22 are the output-input gain
factors, the values of which have to be determined.

Static and dynamic characteristics of the linearised
weld formation process model were estimated from
the welding experiments, which were conducted by
using pulse adjustment actions Ua and Iw with a lim-
ited growth/fall rate. Note that in this case we actu-
ally determined the time constants of the power sup-
ply—weld pool—bead dynamic system. That is why the
time constants have to be checked when changing the
type of the welding equipment or technological proc-
ess. Geometric parameters of the bead were measured
after welding by using LTS [8] with a sampling in-
crement of 1 mm. Mean values of e0 = 7.85 mm and
g0 = 2.2 mm were subtracted from the obtained data
arrays on geometric parameters of the beads, and then
smoothed with a line filter of moving mean

NO[i] = 

∑ 
i — 3

i + 3

NI[k]

7
,

where NO and NI are the smoothed and initial data
arrays, and i and k are the integers (indices of the
arrays). To correctly estimate time constants of the
four transit-time links that make up the model, the
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data arrays were shifted towards the electrode (to the
right along axis x) over corresponding calculated dis-
tances of the transportation lags. The values of the
transportation lags are determined as follows. It is a
known fact that width and height of the bead form
at the solidification front of metal of the weld pool
in its middle and tailing portions [9]. Therefore, the
transportation lags of measurements of height τg and
width τe of the bead can be determined from the fol-
lowing formulae:

τg = 
LTV — Lg

vw
;   τg = 

LTV — Le

vw
, (7)

where LTV is the distance between the light trace of
LTS and torch electrode, mm; Lg is the distance from
the electrode to the end point of the weld pool tailing
portion, mm; and Le is the distance from the electrode
to the middle point of the weld pool, mm.

A regression model was synthesised to calculate
distances Le and Lg. The model was developed by
using a calculation experiment with the presented
model of the process of propagation of heat in a semi-
infinite body heated with a moving normal-rotary heat
source [10]:

Lg = —0.69 + 0.041Ua + 0.0048Iw + 0.3vw [cm];

Le = 0.08 + 0.004Ua + 0.0016Iw + 0.4vw [cm].

Figure 1 shows the plots of variations in geometric
parameters of the beads depending upon the linealy
varying adjustment actions with reactions of transit-
time elemens superimposed on them for comparison.
Noteworthy is non-linear dynamics of variations in
width and height of the bead under the effect of a
welding current pulse, which shows up as decrease in
duration of the output pulse due to the phase shift of
its leading edge (Figure 1, I).

Figure 1. Results of identification of parameters of dynamic links of the weld reinforcement formation model for a pulse of welding
current (I) and voltage (II); a, b – variations in width and height of the reinforcement bead, respectively; c – increments of welding
current and voltage adjustment actions, respectively: 1 – reaction of dynamic links of the model; 2 – geometric parameters of the
reinforcement bead measured with LTS
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The dynamic control object is synthesised as fol-
lows. As it is necessary to limit dynamics of variations
in adjustment actions Ua and Iw, the control vector
is set in the form of time derivatives u =

= 
⎡
⎢
⎣
dUa

dt
 
dIw

dt

⎤
⎥
⎦

T

. Then, to match the control and adjust-

ment actions it is necessary to add an ideal integrating
link to the CO composition. The output vector (ob-
servation vector) is set as y = [Δe(t)Δg(t)]T. The
resulting output equation in the operator form is writ-
ten down as follows:

y = W(p)u, (8)

where W(p) = W3(p)W2(p)W1(p); p is the Laplace
operator; W3(p) is the transfer function of an ideal
link of the transportation lag; W2(p) is the transfer
function of the first-order aperiodic link; and W1(p)
is the transfer function of the ideal integrating link.

These transfer functions in the matrix form look
like as follows:

W1(p) = 

⎡

⎢

⎣

⎢
⎢
⎢
⎢

1
p
 0

0 
1
p

⎤

⎥

⎦

⎥
⎥
⎥
⎥
;   W2(p) = 

⎡

⎢

⎣

⎢⎢⎢
⎢⎢⎢

k11

1 + T11p
 

k21

1 + T21p
k12

1 + T12p
 

k22

1 + T22p

⎤

⎥

⎦

⎥⎥⎥
⎥⎥⎥

;

W3(p) = 
⎡
⎢
⎣

⎢
⎢
e—τep0
0e—τgp

⎤
⎥
⎦

⎥
⎥.

After substitution of transfer functions W3(p),
W2(p) and W1(p) in (8), the output equation will
be written down as follows:

y = 

⎡

⎢

⎣

⎢⎢⎢
⎢⎢⎢

k11

(1 + T11p)p
 e—τep 

k21

(1 + T21p)p e—τep

k12

(1 + T12)p
 e—τgp 

k22

(1 + T22)p
 e—τgp

⎤

⎥

⎦

⎥⎥⎥
⎥⎥⎥

 u. (9)

The limitations have the following form:

⎪
⎪
⎪
dUa(е)

dt
 ≤ umax 1 

⎪
⎪
⎪
,   

⎪
⎪
⎪
dIw(е)

dt
 ≤ umax 2

⎪
⎪
⎪
, (10)

where umax 1 ∈ U; umax 2 ∈ U; U ⊆ ℜ+
2; ℜ+

2 is the
two-dimensional space of non-negative numbers.

Figure 2 shows a structure chart of transfer func-
tion W(p).

To make use of the known procedure of synthesis
of the optimal automatic control system (ACS), ex-

ponential functions are replaced by rational polyno-
mials. e—τp is approximated to a sufficient accuracy by
Pade polynomial [11] of the 5th degree:

e—τp =

= 
τ5p5 — 30τ4p4 + 420τ3p3 — 3360τ2p2 + 15120τp — 30240

τ5p5 + 30τ4p4 + 420τ3p3 + 3360τ2p2 + 15120τp + 30240
.      (11)

The resulting transfer function should be repre-
sented by a system in the state space. Mean values of
the transportation lags, i.e. τe = 9.52 s and τg = 8.38 s,
were determined based on the welding conditions
(vw = const) and preset distance LTV = 70 mm. The
calculations were made proceeding from an assump-
tion that transportation lags τg and τe vary but insig-
nificantly at the chosen range of the welding parame-
ters. Hence, it follows that CO is stationary.

Control object matrices in the state spaces A (14 ×
× 14), B (14 × 2) and C (2 × 14), were calculated
with the MATLAB package by using function ss [12].

Analysis of the obtained matrices shows that the
quantity of lines of output matrix C is smaller than
the dimension of matrix A that determines the state
vector, for the restoration of which it is reasonable to
use the Kalman—Bucy filter, i.e. optimal state ob-
server.

Synthesis of the optimal control system for the weld
bead formation is performed according to the procedure
[7] based on the known principle of distribution or sto-
chastic equivalence [13, 14]. It is used to solve the fol-
lowing interconnected problems: development of the de-
terministic optimal state controller and synthesis of the
Kalman—Bucy filter. Development of the deterministic
optimal controller is formulated as a problem of deter-
mination of optimal feedback control for object (1), (2)
at optimality criterion (3)

u = R—1BTKx̂, (12)

where x̂ is the optimal estimate of the CO state, which
is determined by using the optimal state observer, i.e.
Kalman—Bucy filter; and K is the symmetric matrix
determined from the Riccati matrix equation

K
.
 = —KA — ATK + KBR—1BTK — Q (13)

at boundary condition K(tf) = F.
The required limitations on control are provided

by a corresponding choice of matrix R and inclusion
of the optimal controller of an auxiliary element into
the system, which is described by function uout k =
= sat(uin k, umax k):

uout k = 
⎧
⎨
⎩

⎪
⎪
uout k, if uin k < umax k,
umax k, if uin k ≥ umax k,

 at k = (1, 2, ..., m).      (14)

Synthesis of the Kalman—Bucy filter is made as follows.
As noises of the welding process and observations are un-
correlated (S0(t) ≡ 0), the x̂(t) estimate is unbiased
and optimal if it satisfies equation

x
.
 = Ax̂ + Bu + K0(y — Cx̂);   x̂(t0) = x

__
0 (15)

with a matrix of gain factors K0 = PCTR0
—1, where

matrix P is the solution of the Riccati equation:Figure 2. Structure chart of the dynamic weld reinforcement for-
mation model
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P = AP + PAT — PCTR0
—1 CP + Q0; P(t0) = P0.      (16)

Calculation of the stochastic optimal controller
was made with the MATLAB package tools (by using
function lqry). The resulting solution of the Riccati
equation had the form of matrix K (14 × 14). The
calculation was made by using matrices of weighting
coefficients of the observation vector, Q (2 × 2), and
control vector, R (2 × 2), in the following form:

Q = 
⎡
⎢
⎣
5   0
0  20

⎤
⎥
⎦
;   R = 

⎡
⎢
⎣
2      0
0 0,015

⎤
⎥
⎦
.

Function kalman was used to calculate the Kal-
man—Bucy filter. Matrices of CO in the state space,
matrices of coefficients of input disturbances, V0
(14 × 2), matrices of variation noises, Vo (2 × 2), and
covariance matrices of noises

Q0 = 
⎡
⎢
⎣
0.01    0

0  0.2
⎤
⎥
⎦
;  R0 = 

⎡
⎢
⎣
0.01         0

0   0.004
⎤
⎥
⎦
,

were set as input conditions.
Structure chart of the optimal ACS model (Fi-

gure 3) includes the CO model and model of the sto-
chastic optimal controller, which consists of the op-
timal state controller, element of limitations of the
control actions and optimal state controller, i.e. Kal-
man—Bucy filter. The optimal controller forms con-
trols by way of derivative adjustment actions Ua and
Iw. Vector of the optimal observer state, x̂, is used as
feedback signals. This vector is calculated on the basis
of the a priori information on control object matrices
A, B and C, as well as allowing for current values
of the vector of controls and output vector
[Δe(t)Δg(t)]T.

Transient characteristics of the CO model were
investigated. Figure 4 shows curves of the input and
output signals in formation of pulse controls with a
duration of 5 s and amplitude of 1 V/s and 10 A/s,
respectively. These curves simulate the signals in hy-
pothetic ACS with LTS, which forms a light trace on
the workpiece surface at distance LTV = 70 mm from
the electrode axis. A change in values of geometric
parameters of the bead with some transportation lags

relative to the time point of feeding the control actions
occurs in this case.

The transient and stationary processes in ACS were
modelled by formation of the weld bead (Figures 5
and 6), considerable levels of noises of observation of
the reinforcement width and height, equal to 0.2 and
0.05 mm, respectively, being simulated in this case.
It was determined that fluctuations of output parame-
ters insignificantly changed under the steady-state
conditions, i.e. a change in fluctuations of the rein-
forcement width and height was no more than 0.05
and 0.02 mm, respectively. The modelling results al-

Figure 4. Transient characteristics of the dynamic control object
model: a, b – voltage and welding current control actions, respec-
tively; c, d – variations in weld width and height, respectively

Figure 3. Structure chart of the optimal ACS model
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low a conclusion that developed optimal stochastic
ACS with a transportation lag in the feedback loop
forms an acceptable path of control of the MAG weld-
ing process. Control of the weld reinforcement forma-
tion process described by the multidimensional dy-
namic system provides a minimal time of the transient
process (no more than 8 s) at the absence of overcon-
trol. According to Figure 5, the control actions start
simultaneously changing with a stepwise change in
the master controls at time points of 20 and 50 s, this
causing movement of CO state variables xe and xg.
The paths of changes in the controlled parameters are
of an aperiodic character.

The developed optimal controller provides limita-
tions of dynamics of the adjustment actions. As follows
from Figure 6, despite the transportation lag present
in CO and a substantial level of noises, the control
signals do not exceed the limitation levels of 1 V/s
(for dUa/dt) and 10 A/s (for dIw/dt).

Therefore, it is likely that the approach proposed
for synthesis of optimal ACS to control the MAG
welding process can be further developed towards both

refinement of the structure of the weld formation dy-
namic model and widening of the vector of control
actions (e.g. adjustment of the welding speed) or ob-
servation vector (e.g. measurement of the joint gap).
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Figure 6. Curves of voltage (a) and welding current (b) signals in
optimal ACS

Figure 5. Curves of the transient process in optimal ACS with a
change in master controls e0 and g0 at the 20th and 50th second:
a, b – width xe and height xg of the bead at a current time point;
c, d – signals of observation of width and height of the bead; e,
f – adjustment actions
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