
IMPROVEMENT OF METHOD FOR ESTIMATION
OF THE RISK OF FRACTURE WITHIN THE THINNING

ZONE ON WALLS OF MAIN PIPELINES

V.I. MAKHNENKO, E.A. VELIKOIVANENKO, G.F. ROZYNKA and N.I. PIVTORAK
E.O. Paton Electric Welding Institute, NASU, Kiev, Ukraine

It is shown that application of the mathematical models, which are based on elimination of such assumptions as direct
normals and a plane stress state, in deformation of the thinning zone in pipeline walls and presence of one local critical
point with extreme (determinate) fracture conditions allows revealing the effect of peculiarities of an internal or external
defect on a limiting pressure, as well as behaviour of a material within the deformation range from the beginning of
plastic flow to fracture.
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Numerous experimental tests and treatment of emer-
gency fractures of modern gas pipelines show that
fracture of metal within the zone of different thinnings
of the pipe walls under conditions of intensive biaxial
loading occurs at relatively low plastic strains acting
in this region (up to 2.5—3.0 %). At such strains the
main mechanism of fracture is cleavage, taking place
under the effect of corresponding effective normal
stresses at the fracture centre. This concept of fracture
is also used in recommendations [1], where a criterion
of the limiting state is permissible minimal thickness
δmin of the pipe wall within the thinning zone with
initial dimensions s0 along the pipe generating line
and c0 along the circumference, which is determined
as follows:

δmin ≤ [δ]Rj(s0, c0, D, [δ]),   (j = s, c), (1)

where [δ] is the calculated permissible thickness of
the pipe wall at a given point at the absence of thin-

ning; and Rj is the value depending upon [δ], s0, c0

and pipe diameter D [1] (0.2 ≤ Rj < 1.0).
These recommendations [1] have been well verified

experimentally and are accepted as an approximate,
rather conservative approach to estimation of accept-
ability of thinning defects. In this case, ignored are
such factors as external or internal thinning defect,
defect geometry within dimensions s0, c0, (δ — δmin) =
= a, properties of a material in the form of deformation
resistance in a region above the yield stress and before
fracture due to cleavage at critical strains of about
2.5—3.0 %, which are approximately an order of mag-
nitude higher than those outside thinning, at which
the value of [δ] is determined at a stage of pipeline
design.

The question of stochasticity of a number of geo-
metric data with regard to thinnings, as well as of
mechanical properties of a material within the thin-
ning zone after a long-time operation often arises in
practical estimations of the risk of fracture.

The task of this study was to develop the calcula-
tion algorithms to be used to answer the above ques-
tions at reasonable costs while investigating behaviour
of different local thinnings on pipelines under loading
conditions.

For this, it was necessary to choose a model of
deformation of the pipe wall, not relating it to the
main hypotheses of thin-walled shells (direct normal
and plane stress state), as well as a model of fracture
of a material at relatively low strains, where stochas-
ticity of initiation of fracture has not yet been forgot-
ten due to a developed plastic flow

The deformation model is based on the 3D mathe-
matical description in the cylindrical system of coor-
dinates r, z, β of the deformed region of the pipeline
wall (Figure 1) delineated by coordinate planes z =
= const, β = const with an internal or external defect,
the surface of which is set by the following equation:
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Figure 1. Schematic of the region of pipeline wall (region V) cut
out by coordinate planes z = const and β = const, and thinning
defect with dimensions a, s0 and c0
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r = 
D
2

 — f(β, z). (2)

The boundary conditions set at the boundary
planes (Figure 1) and surface of the defect correspond
to those set for the entire pipe with no allowance for
thinning, which is quite acceptable at sufficiently lo-
cal thinning dimensions s0 and c0.

Classical relationships between components of
strain tensor εij and displacement vector Ui in the
context of the theory of low elasto-plastic strains [2]
hold inside region V limited by the above boundary
planes and surface of the defect, i.e.
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Relationships (3) are also valid for components of
strain increment tensor Δεij and displacement incre-
ment vector ΔUi used at plastic deformation in the
context of the theory of elasto-plastic flow.

Components of stress tensor σij inside region V
meet equilibrium equations, i.e.
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(4)

Relation between the stress tensor and displace-
ment increment within the framework of the theory
of elasto-plastic flow can be written down as follows:
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(i, j = r, z, β),

(5)

where dλ is the scalar coordinate function, which is
determined by the Mises yield condition with isotropic
hardening, i.e.

dλ = 0, if f = σeq
2  — σs

2(ω) < 0,

or f = 0, but df < 0,

dλ > 0, if f = 0 and df > 0.

(6)

Condition f > 0 is inadmissible.
Here σ = 1/3(σrr + σββ + σzz); σeq is the equivalent

stress for tensor σij; σs(ω) are the deformation stresses
for a given material depending upon strain hardening
parameter ω; ω = ∫dεeq

p  is the Odquist parameter;

dεeq
p  is the increment of equivalent plastic strain for

tensor εij
p ; and

dεij
p = dλ(σij — σ). (7)

To implement model (2) through (4), this study
used the method of step-by-step tracing of loading of
volume V by a growing external load (e.g. internal
pressure P

__
). Yield condition (6) was allowed for at

each tracing step by the iteration method [3].
The fracture model is based on an idea of probable

fracture due to cleavage within the thinning zone (vo-
lume V), where maximal main stresses σ1 in this vol-
ume meet condition
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Integration was carried out only with respect to
elementary volumes ΔV, for which σ1 > A; A, B and
η are the parameters of the Weibull three-parameter
distribution law; and V0 is the structural parameter
of a given steel at brittle fracture V0

br ~ (0.05 mm)3

at the crack apex and at tough fracture ~h3, where h
is the characteristic size of finite elements providing
a sufficiently accurate numerical solution for σ1 by
deformation models (2) through (7) within the thin-
ning zone. In other words, the value of V0 can be
assumed to be equal to ΔV in breaking down of volume
V (Figure 1) into finite elements. The rest of the
parameters in model (8) are determined by comparing
the calculation by models (2) through (7) with the
corresponding experimental data. Our investigations
show that the recommendations of study [1], based
on numerous experiments, i.e. expression (1), can be
used as a first approximation, assuming that fracture
probability p is not in excess of 0.05.

Certain simplifications can also be made in fracture
model (8), allowing for the presence of extreme planes
β = const and z = const, where normal stresses σββ or
σzz are close to σ1, and a layer corresponding to β =
= const with thickness ΔβR, or z = const with thick-
ness Δz can be assumed to be an integration volume
in (8). Allowing for this consideration based on the
corresponding experimental data, e.g. [1], and fol-
lowing the principle of the maximum likelihood (min-
imising the discrepancy by probability p) in variation
of thinning sizes (s0, δmin) parameters A, B and η can
be determined at given geometric dimensions and me-
chanical properties of the pipeline material. The out-
come of this approach shows that the sufficiently good

results can be obtained at η = 4.0 and A = 
σt + σy

2
 (σt

and σy are the tensile strength and yield stress of the
material, respectively, in the thinning zone).

The value of B at the above recommendations with
respect to V0 can readily be checked on the basis of
model (8). As a result, the data on A, B and η for a
specific steel, as well as sizes of different shapes of
thinning being known, the probability of fracture can
be calculated for different geometric parameters of a
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pipeline and internal pressure P
__
 on the basis of models

(2) through (8).
Figures 2 and 3 show the results for the 17G1S

steel pipeline with D × δ = 1420 × 20 mm at the
presence of a surface wall thinning defect, the shape
of which can be described depending upon coordinates
z, r, β by the following second-order equation:
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where Rq = D/2 for the external defect and Rq =
= (D — 2δ)/2 for the internal defect; and a, s0 and
c0 are the dimensions of the defect with symmetry
axes z = 0 and β = 0.

Noteworthy among the data in Figures 2 and 3 is
a differing load-carrying capacity of the external and
internal defects, i.e. resistance to the internal pressure,
as well as a substantial effect of the defect depth
(value a).

As seen from Figures 2 and 3, the external defect
is characterised by a lower resistance to the internal

pressure than the internal one. However, this differ-
ence is high in the zone of high fracture probabilities
(p > 0.1), which is of low interest to practice. There-
fore, the absence of differentiation of thinning defects
between the internal or external ones in study [1] is
reasonably justified, based on the data on the external
thinning defect in pipeline walls. Nevertheless, this
fact should be kept in mind.

The data in Figure 3 for shallower defects (a =
= 10 mm), compared with the data in Figure 2 for
deep defects (a = 14 mm), are characterised by a lower
restriction of deformation, lower stresses and, accord-
ingly, lower failure probabilities, this being deter-
mined not only by lower stresses, but also by a value
of B at constant A = 500 MPa and η = 4.0. So, based
on the above choice according to the given recommen-
dations [1], B = 420 MPa for a = 14 mm in Figure 2,
and B = 830 MPa for a = 10 mm.

Of certain interest are the data shown in Figures 4
and 5, which illustrate the effect of dimension c for
a deep thinning with a = 14 mm at constant s = 66 mm
on the probability of fracture, according to the model

Figure 2. Probability of fracture in the defect (wall thinning) zone with a = 14 mm and c = 40 mm, depending on s and P
__
 for external

(a) and internal (b) defect in the 1420 × 20 mm pipe at σy = 440 MPa, A = 500 MPa and B = 420 MPa (  – experimental data):
1 – P

__
 = 10; 2 – 9; 3 – 8; 4 – 7 MPa

Figure 3. Probability of fracture in the defect (wall thinning) zone with a = 10 mm and B = 830 MPa depending on s and P
__
 for external

(a) and internal (b) location of the defect (the rest of designations are the same as in Figure 2)

12 5/2010



employed. These data on a relatively low effect of the
c value of the thinning defect at sufficiently high s
and c on the fracture resistance are in good agreement
with the experimental data given in [1] and other
studies. The new data, compared with this situation,
are those of the type shown in Figure 4 at c < 20 mm
(comparable with thickness of the pipe wall). In this
case, the groove-like thinning defect is close to a crack,
and the concentration of stresses grows accordingly,
this affecting the value of the failure probability.

When estimating the load-carrying capacity of
thinning defects, it is important to know the distri-
bution of load in metal in plastic deformation that
leads to a decrease in the concentration of stresses.

Figure 6, a shows the data on the effect of ratio
σt/σy at constant 1/2(σt + σy) = A = 500 MPa on
limiting pressure P

__
limit in a pipe under consideration,

measuring D × δ = 1420 × 20 mm, at fracture prob-
ability p = 0.05 and presence of a thinning defect with
depth a = 10 mm, extended along axis s = 140 mm
and along circumference c = 40 mm.

Depending upon Odquist hardening parameter ω
(6), the use was made of the power law of hardening
of a material in deformation:

σs
(ω) = σy 
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m

, where ε0 = 
σy

E
,  m = 0.14.

Ratio σt/σy was varied in a range with σt = 350—
440 MPa at A = 500 MPa. For pipe steels, such a wide
range of variations in σt/σy is unlikely. However, it
allows the effect of material deformation conditions
beyond the bounds of elasticity on the limiting state
within the thinning defect zone to be demonstrated
more clearly.

It can be seen that limiting pressure P
__

limit grows
with increase in σt/σy at constant A = 1/2(σt + σy).
This effect is attributable to the character of redistri-
bution of load within the defect zone depending upon
the level of material yield stress σy. The lower the
value of σy, the more uniform is the distribution of
normal stresses within the defect zone under loading,
this eventually leading to decrease in probability p.

Figure 4. Effect of defect width c on fracture probability p in a pipe measuring 1420 × 20 mm with σy = 440 MPa for different P
__
 and

constant s = 66 mm at the defect depth: a – a = 14 mm, B = 420 MPa; b – a = 10 mm, B = 830 MPa; 1 – P
__
 = 10; 2 – 9; 3 – 8;

4 – 7 MPa

Figure 5. Distribution of circumferential stresses σββ in symmetry plane β = βcr at P
__

limit = 10 MPa, σy = 440 MPa, a = 14 mm, s = 66 mm,
c = 40 (a) and 20 (b) mm
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Figure 6, b and c shows the calculation data proving
the above-said.

CONCLUSIONS

1. For estimation of the risk of fracture within the
zone of thinning defects on modern main gas and oil
pipelines, noteworthy is the use of more general ap-
proaches to description of both deformation and frac-
ture, which are based on refusal from such assumptions
as direct normals and a plane stress state in deforma-
tion of the thinning zone and presence of one local
critical point with extreme (determinate) fracture
conditions [1].

2. The suggested calculation method, which is free
from the above assumptions, allowed revealing the
effect caused by peculiarities of an internal or external
thinning defect, as well as by behaviour of a material
in a deformation range from the beginning of plastic
flow to fracture.
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Figure 6. Effect of ratio σt/σy on the value of limiting pressure P
__

limit for a pipe measuring 1420 × 20 mm with an external thinning
defect of a × s × c = 10 × 140 × 40 mm at B = 830 MPa and A = 500 MPa (a), and distribution of stresses σββ in section β = 0 within
the defect zone measuring 10 × 140 × 40 mm at P

__
limit = 8.5 MPa, σy = 440 MPa (b) and P

__
limit = 11.5 MPa, σy = 350 MPa (c)
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