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An important stage of diagnostics of the state of critical welded structures is prediction of their residual
life based on strength analysis by limiting state. In the absence of crack-like raisers spontaneous macrofailure
of structural elements in a number of cases is the result of plastic instability, related to porosity initiation
and development. This work deals with the main problems of modelling tough fracture of welded structures
and proposes methodological basis for description of mechanisms of their limiting state. In particular,
complex finite element models of simultaneous development of 3D stress-strain state of elastoplastic material
with strengthening and pore formation have been developed. Condition of initiation of tough fracture pores
is determined by limit value of Odqvist parameter, and pore development – by Rice—Tracey law. Thus,
limiting state of a structure at developed plastic flow of metal is due to discontinuity growth, local
redistribution of load and reduction of actual load-carrying cross-section. Application of the proposed
methodology was illustrated by examples of calculation of limiting inner pressure of pipeline elements,
allowing for initial stress-strain state at site and repair welding, structural inhomogeneity, and surface
defects of local wall thinning. It is shown that in the absence of geometrical raisers, physical inhomogeneity
has little influence on limiting load at static loading of the considered welded structures. This is in agreement
with the available experience of pipeline system operation that proves applicability of developed approaches
of numerical analysis for effective solution of practical problems of diagnostics of the state of modern
welded structures. 12 Ref., 1 Table, 4 Figures.
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Practical experience all over the world shows
that periodical technical examination of the state
of modern critical structures is the most effective
measure, ensuring reliability of their operation.
Technical examination of such structures consists
of a whole number of stages, among which tech-
nical diagnostics of the state and appropriate pre-
diction of safe residual operating life have a spe-
cial place. Continuous development of diagnostic
means and technologies allows obtaining every
year more and more accurate data on the state
of various structures, in particular welded struc-
tures. Advance of technical diagnostics stimu-
lates respective development of methods of pre-
dicting safe residual operating life. A lot of at-
tention in this case is given to modern develop-
ment of computational engineering, as well as
numerical methods of modelling continuum de-
formations and concurrent processes of fracture
mechanics. For welded structures, for which
strength analysis is usually performed by limiting
state, extremely important for solving practical

problems of prediction of safe residual operating
life, based on concrete data of technical diagnos-
tics, is development of methods of mathematical
modeling of deformation processes up to states
close to the limiting state and mathematical de-
scription of limiting state mechanisms, that is by
far not always reduced to comparison of calcu-
lated maximum stresses or deformations with lim-
iting values for the given structural material un-
der the respective loading conditions. In other
words, unlike strength analysis by allowable
stresses (deformations), calculation by limiting
loads requires, as a rule, application of more pre-
cise methods of non-linear mechanics of defor-
mation (allowing for physical or geometrical non-
linearity, or for one and the other simultane-
ously), as well as involvement of respective cri-
teria of formation of discontinuity (fracture), de-
pending on loading conditions, material proper-
ties, etc., determining the fracture mode.

Over the last decades brittle fracture is be-
lieved to be the best studied in this respect that
can be related to a number of factors, of which
the following are the most important: large-scale
negative consequences of such failures, small dif-
ferences between prior deformation of fracture
zone and the elastic one, i.e. urgency at relatively
simple initial parameters. Nonetheless, creation
of modern, quite rigorous linear theory of fracture
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mechanics of bodies with cracks and approximate
non-linear theory for the same purpose took sev-
eral decades. At prediction of safe residual oper-
ating life of critical welded structures with de-
tected (or hypothetical) crack-like defects, mod-
ern theories of fracture mechanics of bodies with
cracks allow solving a number of practical tasks
[1, 2, etc.] under various loading conditions
(static, cyclic, temperature, in aggressive me-
dium, etc.). Popularity of modern theories of
fracture mechanics of bodies with cracks is de-
termined, primarily, by absence of the need for
detailed analysis of stress-strain sate in the «hot
zone» along a quite indeterminate crack border,
operating with the respective integral charac-
teristics of the following type:

• stress intensity factor Kj (j = I, II, III) and
its critical value Kjc, MPa⋅m1/2;

• released energy per a unit of crack growth
length Jj and its critical value Jjc, J/m;

• crack opening displacement δ and its critical
value δc, mm;

• reference stresses σref, determining the state
of plastic collapse along the crack border at a
specified yield limit σy of material in this zone,
MPa.

Algorithms for calculation of these charac-
teristics, as well as experimental procedures for
determination of their critical values, have been
quite profoundly studied, particularly for Kj and
σref [2, 3, etc.], as well as for Jj that determines
minimum deviations of various investigation re-
sults on limiting loads for specific tasks.

In case of absence of a crack-like defect and
sufficiently tough material of welded structure,
for instance, thinning of bearing wall of a welded
pressure vessel or pipeline, calculations by ad-

missible stresses can lead to tough fractures of
the type of plastic instability [4] that is charac-
teristic for high-strength steels with a small co-
efficient of deformation strengthening. Such cal-
culation data are by far not always confirmed by
experience that is due to additional mechanisms
of compensation of section reduction at tension.

Process of pore formation at developed plastic
flow of structural steels is universally recognized
as one of such mechanisms. In the general form,
regularities of pore initiation and development
processes, as well as the influence of pore forma-
tion on deformation processes and fracture have
been defined, mainly, on the basis of experimen-
tal investigations already in the 1970s. However,
their actual application [5—8, etc.] is rather com-
plicated and requires a number of material char-
acteristics that can be obtained only through
combination of experiment and calculations (ac-
tually, on rather simple samples [5]). Nonethe-
less, the real progress of development of compu-
tational engineering and methods of solving de-
formation problems in 3D definition, allowing
for physical and geometrical non-linearity, no-
ticeably changes the opinions on realization of
complex mathematical models. Respective devel-
opments are performed in various organizations,
including PWI – for welded structures. Main
postulates of such development and some cases
of its application when solving practical prob-
lems are given below.

The work is based on simultaneous considera-
tion of deformation and pore formation processes
in an arbitrary 8-node finite element (FE), used
to simulate a continuum in an orthogonal system
of coordinates x, y, z. Within the considered FE
(Figure 1), distribution of stresses, strains and
temperatures is taken to be uniform.

Porosity develops at a certain level of plastic
deformations, characterized by Odqvist parame-
ter κs:

κs = ∫dεi
p, (1)

where dεi
p = 

√⎯⎯2
3

 √⎯⎯⎯⎯⎯⎯⎯dεij
pdεij

p ; dεij
p  are the compo-

nents of plastic deformation increment tensor (i,
j = x, y, z).

Pores formed in FE are uniformly distributed
through its volume VFE; volume fraction of dis-
continuity ρV is determined by the ratio of vol-
umes of pores Vpore and entire finite element VFE.

Accordingly, condition of the start of pore
formation process in a concrete FE is given by
the following equation:

Figure 1. Schematic of finite element in x, y, z coordinate
system, with displacement in the respective directions V,
U, W and node numbering m, n, r
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⎨
⎩

⎪
⎪

ρV = 0  at  κ < κs,

ρV ≥ ρV
s   at  κ ≥ κs,

(2)

where ρV
s  is the conditional initial volume frac-

tion of pores.
By analogy with ρV concept, the following

characteristics are introduced: ρS – relative area
of pores in FE cross-section, i.e.

ρS = 
Spore

SFE

(3)

and ρl – relative length of FE linear size, taken
up by pores, i.e.

ρl = 
lpore

lFE
. (4)

There exists a connection ρV = 3ρl between
ρV, ρS and ρl, ρS = 2ρl at ρl << 1.

Pores initiating in FE grow with development
of plastic deformations by Rice—Tracey law [5],
i.e.

dρl = ρlK1 exp 
⎛
⎜
⎝
K2 

σm
σi

⎞
⎟
⎠
 dεi

p, (5)

where σm = 
1
3
 (σxx + σyy + σzz) is the mean nor-

mal stress in the given FE; σi = √⎯⎯⎯⎯⎯1
2
 σijσij  is the

stress intensity in this FE; σm/σi is the charac-
teristic of stressed state rigidity; K1 = 0.28; K2 =
= 1.5.

It follows from (5) that value dρl is the rela-
tive increment of FE linear dimensions due to
porosity, i.e. increment of deformation tensor
components can be given by the following sum:

dεij = dεij
e  + dεij

p  + δij(dεТ + dρl),

δij = 1 at i = j, δij = 0 at i ≠ j,
(6)

where dεij
e , dεij

p , δijdεТ, δijdρl are the components
of deformations increment due to stresses by
Hooke’s law, plastic deformation, change of tem-
perature and porosity, respectively.

Proceeding from the method of successive
tracing of development of elastoplastic deforma-
tions and the assumption that at the tracing step
σm/σi value changes only slightly, relationship
(5) becomes

ln 
ρl

(ρl)
∗) = K1 exp 

⎛
⎜
⎝
K2 

σm
σi

⎞
⎟
⎠

∗)

(κ — κ∗)), (7)

where index *) refers this value to the previous
tracing step.

Accordingly, after ρl = (ρl)
*) + Δρl substitu-

tion into (7)

Δρl = (ρl)
∗) 

⎧

⎨

⎩

⎪

⎪ exp 
⎡
⎢
⎣

⎢
⎢K1exp

⎛
⎜
⎝
K2

σm
σi

⎞
⎟
⎠

∗)

(κ — κ∗))
⎤
⎥
⎦

⎥
⎥ — 1

⎫

⎬

⎭

⎪

⎪,     

                                               (κ*) > κs).

(8)

Substitution of Δ for d operator in (6) allow-
ing for (8) yields an expression for total defor-
mation increment Δεij, allowing for pore growth
in this FE per tracing step. Further on the algo-
rithm of solution of deformation problem corre-
sponds to that from [1, 5].

At realization of plastic flow conditions the
following dependence is used:

σi = σs(T, κ)(1 — 2ρl), (9)

where σs(T, κ) are the deforming stresses in the
material at temperature T and Odqvist parameter
κ to (1).

Equations of constraint between tensor σij and
Δεij are as follows:

Δεij = ψ(σij — δijσm) + δij(Kσm + ΔεT + Δρl) — bij,

bij = 
1

2G
 (σij — δijσm)∗) + (Kσm)∗),  (i, j = x, y, z),

(10)

where K = 
1 — 2ν

E
; E is the Young’s modulus; ν

is the Poisson’s ratio; G = 
E

2(1 + ν)
 for material

of this FE; ψ is the function of material state,
determined by yield condition, i.e.

ψ = 
1

2G
 if σi < σs(T, κ)(1 — 2ρl);

ψ > 
1

2G
 if σi = σs(T, κ)(1 — 2ρl);

(11)

σi > σs(T, κ)(1 — 2ρl) state is inadmissible.
Plastic deformations are determined from the

following equation:

Δεij = 
⎛
⎜
⎝
ψ — 

1
2G

⎞
⎟
⎠
 (σij — δijσm),

                 (i, j = x, y, z).
(12)

Realization of conditions (11) is performed in
each tracing step iteratively, using (12), (1),
(7), (8) and respective dependence σs(T, κ) on
κ and T [5]. At each iteration by ψ, stresses σij
are found from (10):

σij = 
1
ψ 

⎛
⎜
⎝
Δεij + δij 

ψ — K
K

 Δε
⎞
⎟
⎠
 + Jij, (13)

where
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Δε = 
Δεxx + Δεyy + Δεzz

3
,

Jij = 
1
ψ 

⎡
⎢
⎣

⎢
⎢(bij — δijb) + δij 

⎛
⎜
⎝

⎜
⎜Kσ∗) — 

ΔεT + Δρl

K

⎞
⎟
⎠

⎟
⎟

⎤
⎥
⎦

⎥
⎥,

b = 
1
3
 (bxx + byy + bzz).

Tensor Δεij and displacement increment vector
ΔUi are connected by the following relationship:

Δεij = 
1
2
 (ΔUi, j + ΔUj, i), (14)

where the comma in the index corresponds to
differentiation within FE, i.e. in the system of
coordinates x, y, z (see Figure 1). From (14) at
Δεij << 1 it follows that

Δεxx = 
ΔUm, n, r — ΔUm — 1, n, r

xm, n, r — xm — 1, n, r
,

Δεyy = 
ΔVm, n, r — ΔVm, n — 1, r

ym, n, r — ym, n — 1, r
,

Δεzz = 
ΔWm, n, r — ΔWm, n, r — 1

zm, n, r — zm, n, r — 1
,

Δεxy = 
1
2
 ×

× 
⎡
⎢
⎣

⎢
⎢

ΔUm, n, r — ΔUm, n — 1, r

ym, n, r — ym, n — 1, r
 + 

ΔVm, n, r — ΔVm — 1, n, r

xm, n, r — xm — 1, n, r

⎤
⎥
⎦

⎥
⎥
,

Δεxz = 
1
2
 ×

× 
⎡
⎢
⎣

⎢
⎢

ΔUm, n, r — ΔUm, n, r — 1

zm, n, r — zm, n, r — 1
 + 

ΔWm, n, r — ΔWm — 1, n, r

xm, n, r — xm — 1, n, r

⎤
⎥
⎦

⎥
⎥
,

Δεyz = 
1
2
 ×

× 
⎡
⎢
⎣

⎢
⎢

ΔUm, n, r — ΔUm, n, r — 1

zm, n, r — zm, n, r — 1
 + 

ΔWm, n, r — ΔWm, n — 1, r

ym, n, r — ym, n — 1, r

⎤
⎥
⎦

⎥
⎥
,

(15)

where xm, n, r, ym, n, r, zm, n, r, …  are the coordinates
of FE components (see Figure 1) allowing for
their changes at differentiation, i.e.

xm, n, r = xm, n, r
∗)  + ΔUm, n, r,

ym, n, r = ym, n, r
∗)  + ΔVm, n, r,

zm, n, r = zm, n, r
∗)  + ΔWm, n, r.

(16)

Stress tensor components (13) satisfy static
equations for inner FE and respective limiting
conditions. In its turn, components of ΔUi(ΔU,
ΔV, ΔW) vector meet the respective conditions
on the boundary.

Resolving system of algebraic equations rela-
tive to displacement increment vector in FE
nodes at each step of tracing and iteration by ψ
is determined as a result of minimizing the (func-
tional Lagrange variation principle) [9]:

E1 = — 
1
2
 ∑ 

V

(σij + Jij)ΔεijVm, n, r +

+ ∑ 
SP

PiΔUiΔSP
m, n, r,

(17)

where ∑
V

 is the operator of summation by inner

FE; ∑
S

P

 is the operator of summation by surface

FE, in which components of force vector Pi (i =
= x, y, z) are assigned, i.e. system of equations

∂E1

∂ΔUm, n, r

 = 0,  
∂E1

∂ΔVm, n, r

 = 0,

∂E1

∂ΔWm, n, r

 = 0
(18)

allows deriving a solution for increments of dis-
placement vector in each step of tracing and it-
eration by ψ for the respective FE. State of plastic
instability for the considered FE at the specific
tracing step is determined by the value of func-
tion ψ.

It follows from (12), (13) that at increase of
function ψ, plastic deformation increments Δεij

p

grow and stresses σij decrease. If in the previous
tracing step Odqvist parameter κ*), and plastic
instability develops at deformation εf, then,
equating κ∗) + Δεi

p = εf, we can evaluate
⎛
⎜
⎝
ψ — 

1
2G

⎞
⎟
⎠cr

 values, above which the process of

plastic instability is quite real in this FE, i.e.

⎛
⎜
⎝
ψ — 

1
2G

⎞
⎟
⎠cr

 ≥ 
εf — κ∗)

1.5σi
 ≈ 

εf — κ∗)

1.5σs(κ, T)
. (19)

Thus, condition (19) can be considered to be
the upper constraint for function ψ in terms of
plastic instability. In other words, if the iteration
process by ψ in the considered FE at a given
loading step yields rising ψ values higher than
ψcr by (19), then it can be assumed that the
element is not able to take the load in this step,
ψ → ∞ and σij → 0, respectively.

Another variant of loss of performance of this
FE is also possible: true maximum principal

stresses 
σ1

1 — 2ρl
 exceed cleavage stresses Sc, that

is possible at high deformation strengthening of
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material. In this case, it should be also assumed
that at this tracing step and in all the subsequent
ones this element cannot take the load, i.e. ψ →
→ ∞, σij → 0.

Eventually, we can define two main condi-
tions, when a given FE irreversibly looses its
ability to take the load:

ψ > 
1

2G
 + 

εf — κ∗)

1.5σs(κ, T)
 is the plastic instability;

σ1

1 — 2ρl
 > Sc is the cleavage fracture.

(20)

If the process of the above «zeroing» to con-
ditions (20) proceeds at this loading step, cov-
ering an ever greater number of adjacent FE, and
does not allow moving to the next step, then this
step determines the limit load of «spontaneous
fracture».

Such an approach requires additional knowl-
edge of process parameters:

κs, ρV
s  are the parameters of pore initiation;

εf, Sc are the parameters of finite element «ze-
roing».

For structural steels values Sc are quite well-
known [1, etc.]. As regards εf, recommendations
of [5, 8] can be used, connecting εf to rigidity
of stressed state σm/σi by empirical dependencies
of type [8]

εf = 0.07 + 2.99 exp (—1.5σm/σi)… (21)

In the absence of experimental data for κs and
ρV

s , 0.005 < κs < 0.03 and 0.01 < ρV
s  < 0.05 can

be approximately taken. Here it should be taken
into account that at the stage of developed pore
formation (close to limiting state) influence of
possible errors of selection of initial κs, ρV

s  values
on derived solution decreases markedly.

Given below is a number of examples of ap-
plication of the above-described approach for
pipe 2R × δ = 1420 × 20 mm from steel X70 loaded
by inner pressure.

The following steel properties were assumed:
yield limit σy = 490 MPa, Young’s modulus E =

Figure 2. Distribution of residual stresses in the zone of circumferential weld: a – circumferential σββ; c – longitudinal
σzz; c – radial σrr 
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= 2⋅105 MPa, cleavage stress Sc = 1000 MPa,
σs(κ) = σy + Aκm, where A = σТ

1 — mFm and m =
= 0.14 are the coefficients. Metal microstructure
is ferritic-pearlitic.

Case 1. Pipe, geometrically ideal and physi-
cally uniform in the initial condition, is loaded
by inner pressure P. Stresses σββ, σrr, σzz arising
in pipe wall are non-uniformly distributed at P ≠
≠ 0 across wall thickness that causes certain
physical inhomogeneity, which is manifested at
pore initiation (κ > κs = 0.01) and growth, be-
cause of different values σm/σi and fracture
mechanisms. However, as shown by our calcula-
tions, this non-uniformity is small, therefore, at
P = 19.4 MPa porosity is found through the entire
volume, and at P = 19.5 MPa spontaneous frac-
ture both by the mechanism of plastic instability
and by microcleavage takes place.

Limit load of 19.4 < Plim < 19.5 MPa is close
to the actual upper limit load for steel X70 in
the absence of stress raisers, either geometrical
or physical.

Case 2. Conditions are the same, as in Case 1,
but pipe metal has residual (initial) balanced
stresses σij

res, shown in Figure 2, i.e. maximum
stresses σββ are on the level of yield limit
(490 MPa) that is characteristic, in particular,
for stressed state in the vicinity of circumferential
site welds.

According to calculations, limiting state cor-
responds to limit load 19.21 < Plim < 19.22 MPa,
i.e. compared to the previous case lowering on
the level of up to 2 % (in absence of raisers and
without any essential development of dissipated
damage of metal in welding heating area) con-
firms the known postulate that under static load-
ing of steel structures the influence of residual
stresses on the limit load is negligible.

Case 3. Conditions are the same, as in Case 1,
but structural inhomogeneity (typical distribu-
tion of microstructural components of pipe steel
in the area of circumferential site weld: marten-
site – 0.32—0.35, bainite – 0.67—0.64, ferrite-
pearlite – 0.02—0.01 with inhomogeneity width
of about 15 mm) and changes of mechanical prop-
erties of material of the respective FE, related
to this inhomogeneity, are in place [10]. Results
of calculation of limit load are indicative of the
fact that within microstructural (phase) inhomo-
geneity, caused by welding temperature cycle,
no noticeable changes in the limit static load take
place, but fracture mode changes as follows: plas-
tic instability in the volume of structural inho-
mogeneity and microcleavage in the homogene-
ous part of the structure that is also in quite good
agreement with the experimental data.

Figure 3. Development of macrofracture by the mechanism
of plastic instability in the longitudinal section of surface
defect of pipeline element at P = 17.7 MPa (finite elements,
which have lost their load-carrying capacity, are shown in
grey): iteration 1 – macrocrack initiation; 2, 3 – defect
development; 4 – violation of pipe wall integrity

Figure 4. Residual stresses after arc welding up of thinning
defect s × c × a = 66 × 40 × 14 mm in 2R × δ = 1420 ×
× 20 mm pipe from steel X70 on outer surface r = 70 mm:
a – circumferential σββ; b – longitudinal σzz 
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This work dealt with quite a number of similar
examples of variation of residual (balanced)
stress distributions of the type of welding
stresses, as well as microstructural changes and
their combinations, which, however, do not
change the conclusion following from Cases 1—3
that in the absence of geometrical raisers the
considered physical inhomogeneity has little in-
fluence on limit load at static loading of steel
welded structures. Here it should be noted that
the factor of the influence of structural transfor-
mations and kinetics of stress-strain state of metal
in the area of the weld and HAZ in welding on
characteristics of pore initiation (κs, εf, Sc) and
degree of dissipated damage ρV

s  requires addi-
tional investigations.

Case 4. A typical problem is assessment of the
state of structures with geometrical non-uniform-
ity of the type of pipe wall thinning, which is
this Case is solved with the same assumptions as
in [11], but at greater deformations. Thinning of
ellipsoidal shape on the pipe outer surface is de-
scribed by the following equation in the cylin-
drical system of coordinates r, β, z:

⎛
⎜
⎝
R — r

a

⎞
⎟
⎠

2

 + 
⎛
⎜
⎝
2βr
c

⎞
⎟
⎠

2

 + 
⎛
⎜
⎝
2z
s

⎞
⎟
⎠

2

 = 1, (22)

where a, c, s are the overall dimensions of thin-
ning by wall thickness (a), around the circum-
ference (c), along pipe axis (s); β = 0 and z =
= 0 in the plane of symmetry.

For the considered pipe at working pressure
P = 7.5 MPa a case of external surface defect
was analyzed. Defect dimensions were s = 66 mm,
a = 14 mm, c = 40 mm that is allowable [2]. It
should be noted that the above value of operating
pressure allows for safety factors typical for the
conditions of operation of pipeline elements (2—
3). Therefore calculation of limiting state in this
case requires detailed modeling of fracture proc-
esses in the raiser area. As shown by investiga-
tions within the above-described methodology,

limiting state of a pipe with a defect is reached
at the pressure of 17.7 MPa by the mechanism
of plastic instability. Nature of spontaneous frac-
ture in the area of geometrical anomaly is deter-
mined by the order, in which FE loose their abil-
ity to take the load according to (20). Proceeding
from the results of calculations (Figure 3), frac-
ture initiates on the periphery of a surface defect
and develops in its longitudinal section under
the impact of circumferential stresses in the pipe
wall.

Case 5. One of the technological processes of
restoration of load-carrying capacity of pipes
with detected defects of local thinning type is
surfacing by welding [12]. In this case opera-
tional loss of pipe wall metal is compensated by
deposited metal and overall dimensions of the
structure are restored to normative values. Here
residual welding stresses develop in the area of
repaired defect, the influence of which on load-
carrying capacity of the pipe requires additional
investigations. In particular, developed proce-
dure of evaluation of limiting state of structures
by tough fracture mechanism allows determina-
tion of limit pressure preceding spontaneous de-
velopment of macrofractures in the region of local
non-uniformity of the stressed state. Figure 4
gives the results of calculation of characteristic
residual stresses in the field of welding up a defect
of ellipsoidal shape, parameters of which are
given in Case 4. These data illustrate high local
stresses, reaching the yield limit of the considered
steel. Here limit pressure, at which plastic insta-
bility of such a pipe develops, is equal to P =
= 19.4 MPa by the results of computational in-
vestigation that, alongside the conclusions of
Case 3 on insignificant influence of structural
inhomogeneities on the kinetics of initiation and
development of tough fracture pores, confirms
the effectiveness of defect repair by surfacing in
terms of safe residual operating life of a pipeline
element.

Results of calculation of limit loads of pipeline elements (2R × δ = 1420 × 20 mm) under the impact of inner pressure depending on
structure initial state

Initial structure state Fracture pressure, MPa Fracture mode

Uniform structure 19.5 Microcleavage

Presence of local residual stresses charac-
teristic for site circumferential welds

19.2 Microcleavage

Structural inhomogeneity of welds 19.5 Plastic instability in structural inhomogeneity zone,
microcleavage in the uniform part

Geometrical inhomogeneity of the type of
semielliptical wall thinning

17.7 Plastic instability in defect peripheral part

Presence of local residual stresses induced by
repair welding

19.4 Plastic instability in residual stress area
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The Table gives comparative results of calcu-
lation of limiting state (Cases 1—5), which lead
to the general conclusion that the influence of
characteristic welding processes (site or repair
welding) on pipeline element metal (structural
transformations, residual stress-strain state) in
terms of the magnitude of limit operating load
is insignificant by tough fracture criteria.

Conclusions

1. Numerical procedure of investigation of proc-
esses of tough fracture of structures under exter-
nal load impact was developed. For this purpose
a model of pore initiation and development was
constructed on the basis of finite element analysis
of complex stress-strain state of structural ele-
ments at developed flow of material. Pores leads
to lowering of structure load-carrying capacity,
and as a result – to its spontaneous fracture.
Proposed approach allows tracing of the kinetics
of structure state right up to limiting state.

2. Typical cases of loading pipeline element
by inner pressure are considered. It is shown that
the influence of structural inhomogeneity of pipe
steel, as well as initial stress-strain sate induced,
in particular, by site welding, on the limiting
load that can be taken by such a structure is
insignificant.

3. Limiting states were studied according to
tough fracture mechanism of pipeline section
with an external ellipsoidal defect of the type of
local wall thinning, in particular, after repair by
surfacing. It is shown that in terms of develop-
ment of tough fracture such a kind of repair does

not lower the load-carrying capacity of the re-
stored structural element, despite the high resid-
ual stresses in the repaired defect area.
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