EDITORIAL BOARD

Editor-in-Chief
B.E. Paton

Scientists of PWI, Kiev

S.I. Kuchuk-Yatsenko (vice-chief ed.),
V.N. Lipodaev (vice-chief ed.),
Yu.S. Borisov, G.M. Grigorenko,
A.T. Zelnichenko, V.V. Knysh,
I.V. Kryvtsun, Yu.N. Lankin,
L.M. Lobanov, V.D. Poznyakov,
I.A. Ryabtsev, K.A. Yushchenko

Scientists of Ukrainian Universities
V.V. Dmitriik, NTU «KPI», Kharkov
V.V. Kvasnitsky, NTUU «KPI», Kiev

V.D. Kuznetsov, NTUU «KPI», Kiev

Foreign Scientists
N.P. Alyoshin

N.E. Bauman MSTU, Moscow, Russia
Guan Qiao
Beijing Aeronautical Institute, China
A.S. Zubchenko
DB «Gidropress», Podolak, Russia
M. Zinigrad
College of Judea & Samaria, Ariel, Israel
V.I. Lysak
Volgograd STU, Russia

Ya. Pilarczyk
Welding Institute, Gliwice, Poland
U. Reisgen
Welding and Joining Institute, Aachen, Germany
O.I. Steklov
Welding Society, Moscow, Russia
G.A. Turichin
St. Petersburg SPU, Russia

Founders
E.O. Paton Electric Welding Institute, NASU
International Association «Welding»

Publisher
International Association «Welding»

Translators
A.A. Fomin, O.S. Kuznchko, I.N. Kutianova

Editor
N.A. Dmitrieva

Electron galley
D.I. Sereda, T.Yu. Snegiryova

Address
E.O. Paton Electric Welding Institute,
International Association «Welding»
11 Kazimir Malevich Str. (former Bozenko Str.),
03680, Kiev, Ukraine
Tel.: (38044) 200 60 16, 200 82 77
Fax: (38044) 200 82 77, 200 81 45
E-mail: journal@paton.kiev.ua
www.patonpublishinghouse.com

State Registration Certificate
KV 4790 of 09.01.2001
ISSN 0957-798X

Subscriptions
$348, 12 issues per year,
air postage and packaging included.
Back issues available.

All rights reserved.
This publication and each of the articles contained herein are protected by copyright.
Permission to reproduce material contained in this journal must be obtained in writing from the Publisher.

CONTENTS

SCIENTIFIC AND TECHNICAL

Sydorets V.N., Krivtsun I.V., Demchenko V.F., Krikent I.V.,
Kovalenko D.V., Kovalenko I.V. and Pavlov A.G.
Calculation and experimental research of static and dynamic volt-ampere
characteristics of argon arc with refractory cathode 2

Yushchenko K.A., Markashova L.I., Zvyagintseva A.V.,
Khokhlouya Yu.A., Kushnaryova O.S. and Chervyakov N.O.
Microstructural features of multilayer welds with different hot
cracking sensitivity ... 9

Jianhua Yao and Kovalenko V.
Research progress of supersonic laser deposition technology 14

Skulsky V.Yu., Zhukov V.V., Nimko M.A., Moravetsky S.I.
and Mishchenko L.D.
Evaluation of susceptibility to temper brittleness of heat-resistant steels using high-temperature
testing .. 22

INDUSTRIAL

Pilarczyk J.
Activities of the institute of welding in Gliwice in
the field of training the personnel for welding production 28

Grechanyuk N.I., Grechanyuk V.G., Khomenko E.V.,
Grechanyuk I.N. and Zatovsky V.G.
Modern composite materials for switching and welding equipment. Information 2.
Application of high-rate vacuum evaporation methods for
manufacturing electric contacts and electrodes 34

Goncharov I.A., Fajnberg L.I., Rybakov A.A. and Netyaga A.V.
Analysis of applicability of slag crust in production of
agglomerated fluxes ... 40

INFORMATION

Reporting conference on Program «Resource» 45
On January 22, 2016 at the E.O. Paton Electric Welding Institute the reporting conference on the results of fulfillment of the fourth stage of the target integrated Program of the NAS of Ukraine «Problems of Life and Safe Operation of Structures, Constructions and Machines» («Resource») in 2013–2015 was held. In the work of the Conference more than 100 scientists and experts from different institutions and organizations of Ukraine participated.

The Conference was opened by L.M. Lobanov, the Academician of the NASU. He reported that to fulfill this Program, which consisted of 9 sections and included 126 projects, 25 institutes of 8 Departments of the NASU were involved. The part of the works was devoted to implementation of results of the previous stages of the Program to the corresponding industrial branches of Ukraine and the further improvement of monitoring of technical state of critical objects.

The following review papers of the scientific supervisors of the sections on the main results of Program «Resource» were delivered:

- V.V. Kharchenko, the Corr. Member of the NASU, Chief of Section «Development of methodological fundamentals of evaluation and life extension of structural elements of objects of increased danger and aerospace engineering»;
- Z.T. Nazarchuk, the Academician of the NASU, Chief of Section «Development of methods and new technical means of nondestructive testing and diagnostics of state of materials and products of long-term service»;
- Prof. M.S. Khoma, the Deputy Chief of Section «Development of methods of protection of structural elements of the objects of long-term service against corrosion»;
- V.N. Voevodin, the Corr. Member of the NASU, Chief of Section «Development of effective methods for evaluation and service life extension of objects of nuclear power engineering»;
- A.A. Dolinsky, the Academician of the NASU, Chief of Section «Improvement of reliability and service life extension of power equipment and systems»;

Speech of Prof. V.V. Panasyuk
were developed used in the railway transport. The technological recommendations for industrial production of the contact plates of pantographs, which manufactures the contact plates of pantographs, were carried out. In cooperation with the enterprise, according to the needs of Company «Ukrzaliznytsya» was created, experimental specimens and inserts of high-current sliding contact were obtained. Let us represent some of them.

For the branch of railway transport within the frames of the integrated project, fulfilled by the Institute of Ferrous Metallurgy, Physical-and-Technological Institute of Metals and Alloys and H.V. Karpenka Physico-Mechanical Institute, the new wear-resistant steel for railway wheels and the methods for determination of their service life at the presence of the damaged rolling surface defects of dent type were developed. The laboratory metallurgical complex was created, which allows manufacturing the experimental specimens being constant by chemical composition, nonmetallic inclusions and harmful impurities. The parameters of hot deformation meet the requirements of industrial production of wheels and are different from the base steel by the reduced carbon content and the use of technologies of dispersion nitride and solid solution strengthening by manganese and silicon. A significant increase in the service life and reliability of the wheels is predicted.

The specialists of Physical-and-Technological Institute of Metals and Alloys proved that the increase in life of high-current sliding contact is based on the application of inserts based on copper with alloying additions of iron, chromium and carbon, which provide the increased tribological properties at lower wear of the contact wire. The technological equipment was created, experimental specimens and inserts were manufactured, investigations of their properties according to the needs of Company «Ukrzaliznytsya» were carried out. In cooperation with the enterprise, which manufactures the contact plates of pantographs, the technological recommendations for industrial mastering of production of the proposed contact parts were developed used in the railway transport.

I.M. Frantsevich Institute of Problems of Materials Science developed the technologies for manufacture of elements of friction pairs of powder composite materials with the increased service life for braking devices of the rolling stock of railway transport. The complex of laboratory and bench tests of physical-mechanical and tribotechnical characteristics of the produced materials of metal–glass system and the pilot-industrial approbation of the developed technology in the plant conditions was carried out, the preparations for their serial production began.

The system for control of process of flash-butt welding of rails under stationary and field conditions was created, which increases the service life and reliability of railway tracks. It allows also detecting the deviation of parameters and preventing their exceeding of the normative tolerances, that stabilizes the welding process and improves the quality and longevity of welds. The system passed testing under the industrial conditions, and is implemented in the rail-welding enterprises of «Ukrzaliznytsya».

The complex of technical means for automated ultrasonic flaw detection of railroad tracks was created using the updated information technologies. The mathematical software of microprocessor units and means of interactive interaction of operator with control organs of the ultrasonic rail flaw detector was developed. The comprehensive investigation of the designed mechanical and electronic units of the detector on the specimens with different types of defects was carried out. The pilot model of the automated ultrasonic flaw detector was created for application in railway economy of Ukraine for detecting defects in the rails of track.

For the branch of pipeline transport the causes for fracture of circumferential welded joints of main gas-and-oil pipelines were investigated. It was established that they are caused by the presence of technological defects, mainly corrosion due to a low quality of assembly-welding and maintenance works. The level of mechanical properties of welded joint metal, considering the long operation of oil-and-gas pipelines, is sufficient and can not be considered as the causes for their fracture. The recommendations regarding elimination of the causes of defects and prevention of fracture of circumferential joints during service were provided.

The first domestic equipment for low-frequency ultrasonic testing of state of technological pipelines and other long objects without scanning their surfaces was created. Its essential advantage is a long-range action and efficiency of diagnostics of long objects in the places, where other methods are unsuitable, as, for example, underground where pipelines cross roads.
and railway tracks, as well as pass across the rivers and other obstacles. The testing and adaptation of the equipment was carried out as applied to the industrial conditions. It was established that it provides an increased sensitivity to corrosion-erosion damages, and as to accuracy of determination of distance to the defects it corresponds to the best foreign analogues.

PWI developed the system of continuous acoustic-emission monitoring of technical state of high-temperature components of the power equipment. It allows determining the preliminary fracture load of material under the real operating conditions of structural elements on the basis of acoustic emission data at any time irrespective of operation period and variations in temperature. The system was put into industrial operation for monitoring of steam pipelines of hot steam overheat of power unit No. 1 of Kiev Central Heating Plant-6. The works are also conducted regarding its application for the continuous monitoring of the boiler drum at Kiev Central Heating Plant-5.

The complex of technical measures for high-frequency and optical-acoustic diagnostics of composite structural elements of aerospace engineering was created. The complex includes ultrahigh-frequency reflectometer of millimeter range of wave lengths, optical-acoustic interference correlator and software for detection of delaminations and other inner defects in the composites in real time. The investigation of defects detection in the composite specimens of multi-layered and cellular structure was carried out. The testing of the developed complex of technical means of ultrahigh-frequency and optical-acoustic diagnostics is planned in the industrial conditions at State Enterprise «Antonov» and Design Bureau «Yuzhnoe».

The technology of diagnostics using the method of electronic shearography of aircraft structural elements of metallic and composite materials was developed. Its effectiveness is confirmed by research works both on test specimens, as well as on full-scale elements of fuselage lining of the aircraft wing. It can be used in manufacture of structures, as well as during their operation and maintenance. Nowadays, the technology is introduced for diagnostics of aircraft equipment components at Company «Antonov».

The hybrid technology was developed, which combines EBW and FSW for restoration of life of aerospace engineering structures made of aluminum and magnesium alloys. The standard series of tools and methodology of preliminary treatment with friction and stirring of the surface layers were developed, which allow obtaining a fine-grained structure of alloys, and significantly improving the strength of joints after EBW. The hybrid technology is implemented at Company «Motor-Sich».

The total expected economic effect from implementation of the results of the projects of Program «Resource» amounts to tens of millions UAH per year. In general, many other useful results were obtained from the projects. These results are challenging and give grounds about the practicability of the further work of the Program at the next stage.

The materials of Program «Resource» can be found in the open access on the link: http://patonpublishinghouse.com/ compilations/ Resource2015.pdf.

Dr. A.T. Zelnichenko, PWI
SUBSCRIPTION

«The Paton Welding Journal» is Published Monthly Since 2000 in English, ISSN 0957-798X.
«Avtomaticheskaya Svarka» Journal (Automatic Welding) is Published Monthly Since 1948 in Russian, ISSN 005-111X.
«The Paton Welding Journal» is Cover-to-Cover Translation of Avtomaticheskaya Svarka Journal into English.

If You are interested in making subscription directly via Editorial Board, fill, please, the coupon and send application by Fax or E-mail.

«The Paton Welding Journal» can be also subscribed worldwide from catalogues subscription agency EBSO.

SUBSCRIPTION COUPON
Address for journal delivery

Term of subscription since
Name, initials
Affiliation
Position
Tel., Fax, E-mail

20 till 20

We offer the subscription all issues of the Journal in pdf format, starting from 2009.
The archives for 2009–2014 are free of charge on www.patonpublishinghouse.com site.

ADVERTISEMENTS
in «Avtomaticheskaya Svarka» and «The Paton Welding Journal»

External cover, fully-colored:
First page of cover (190×190 mm) — $700
Second page of cover (200×290 mm) — $530
Third page of cover (200×290 mm) — $500
Fourth page of cover (200×290 mm) — $600

Internal cover, fully-colored:
First/second/third/fourth page of cover (200×290 mm) — $400

Internal insert:
Fully-colored (200×290 mm) — $340
Fully-colored (double page A3) (400×290 mm) — $500

• Article in the form of advertising is 50 % of the cost of advertising area
• When the sum of advertising contracts exceeds $1001, a flexible system of discounts is envisaged

Size of journal after cutting is 200×290 mm

Editorial Board of Journal «Avtomaticheskaya Svarka» and «The Paton Welding Journal»
E.O. Paton Electric Welding Institute of the NAS of Ukraine
International Association «Welding»
11 Kazimir Malevich Str. (former Bozhenko Str.), 03680, Kiev, Ukraine
Tel.: (38044) 200 60 16, 200 82 77, Fax: (38044) 200 82 77, 200 81 45
E-mail: journal@paton.kiev.ua; www.patonpublishinghouse.com