International Scientific-Technical and Production Journal

Published Monthly Since 2000

English Translation of the Monthly «Avtomatychne Zvaryuvannya» (Avtomaticheskaya Svarka/Automatic Welding) Journal Published in Ukrainian and Russian Since 1948

EDITORIAL BOARD

E.O. Paton Electric Welding Institute, Kyiv, Ukraine: B.E. Paton (Editor-in-Chief), S.I. Kuchuk-Yatsenko (Deputy Editor-in-Chief), V.M. Lipodaev (Deputy Editor-in-Chief), O.M. Berdnikova, Yu.S. Borisov, V.V. Knysh, V.M. Korzhyk, I.V. Krivtsun, Yu.M. Lankin, L.M. Lobanov, S.Yu. Maksimov, M.O. Pashchin, V.D. Poznyakov, I.O. Ryabtsev, K.A. Yushchenko; V.V. Dmitrik, NTUU «Kharkiv Polytechnic Institute», Kharkiv, Ukraine; E.P. Chvertko, V.V. Kvasnitsky, NTUU «Igor Sikorsky Kyiv Polytechnic Institute», Kyiv, Ukraine; M.M. Student, Karpenko Physico-Mechanical Institute, Lviv, Ukraine; M. Zinigrad. Ariel University. Israel: Ya. Pilarczyk, Welding Institute, Gliwice, Poland; U. Reisgen, Welding and Joining Institute, Aachen, Germany

Founders

E.O. Paton Electric Welding Institute International Association «Welding»

Publisher International Association «Welding» Translators

A.O. Fomin, I.M. Kutianova Editor N.G. Khomenko Electron galley D.I. Sereda, T.Yu. Snegiryova

Address

E.O. Paton Electric Welding Institute, International Association «Welding» 11 Kazymyr Malevych Str. (former Bozhenko), 03150, Kyiv, Ukraine Tel.:/Fax: (38044) 200 82 77 E-mail: journal@paton.kiev.ua www://patonpublishinghouse.com/eng/journals/tpwj

> State Registration Certificate KV 4790 of 09.01.2001 ISSN 0957-798X DOI: http://dx.doi.org/10.37434/tpwj

Subscriptions

12 issues per year, back issues available.
\$384, subscriptions for the printed (hard copy) version, air postage and packaging included.
\$312, subscriptions for the electronic version (sending issues of Journal in pdf format or providing access to IP addresses).
Institutions with current subscriptions on printed version can purchase online access to the electronic versions of any back issues that they have not subscribed to. Issues of the Journal (more than two years old) are available at a substantially reduced price.

All rights reserved. This publication and each of the articles contained herein are protected by copyright. Permission to reproduce material contained in this journal must be obtained in writing from the Publisher.

CONTENTS

SCIENTIFIC AND TECHNICAL

Berdnikova O.M., Kostin V.A., Poznyakov V.D., Gaivoronskii O.A., Alekseenko T.O. and Alekseenko I.I. Structure and crack resistance of special steels with 0.25–0.31 % carbon under the conditions of	
simulation of thermal cycles of welding 2	
<i>Skryabinskyi V.V., Nesterenkov V.M., Rusynyk M.O.</i> and <i>Strashko V.R.</i> Effect of mode of electron beam welding, heat treatment and plastic deformation on strength of joints of aluminium 1570 alloy	
Babinets A.A., Ryabtsev I.O., Lentyugov I.P., Ryabtsev I.I., Demchenko Yu.V. and Panfilov A.I. Problems and prospects of surfacing of copper and copper parts by wear-resistant layers	-
(Review))
of crack resistance of banded support rolls at high-speed surfacing with low energy input	ŀ

INDUSTRIAL

BRIEF INFORMATION

EBW installations for granular metallurgy 56

Developed in PWI

EBW INSTALLATIONS FOR GRANULAR METALLURGY

Installations for granular metallurgy are designed for degassing, filling and vibration compaction of granules in

capsules with a subsequent sealing applying electron beam welding.

In the installations the following technological operations are performed:

• heating and degassing of products (capsules) to remove adsorbed moisture and gases from the inner and outer surfaces;

• degassing of granules when filling a product;

• vibrocompaction of granules in a product during filling process;

• electron beam welding of the plug, installed in the neck of a product;

• cooling of a filled and sealed product in vacuum.

The E.O. Paton Electric Welding Institute produces three standard sizes of installations for granular metallurgy: KL168, KL114 and KL139.

	Description of parameter	Value
1	Overall dimensions of installation, mm:	
	length	7980
	width	4470
	height	3140
2	Weight of installation, t	10
3	Inner dimensions of vacuum chamber, mm:	
	length	1500
	width	1300
	height	1854
4	Maximum dimensions of product to be welded, mm of a cylinder type	
	diameter	600
	height	650
	of a disc type (vertical position)	
	diameter	800
	width	400
5	Weight of product to be welded, kg, max	1000
6	Depth of weld, mm, not less than	6
7	Working vacuum in the vacuum chamber, Pa, not worse than	2,66.10-3
8	Working vacuum in the gun, Pa, not worse than	6,67.10-3
9	Leakage into an empty and clean chamber, Pa·l/s (mm Hg·l/s), not more than	5 (0,0375)
10	Time for evacuation of the vacuum chamber (up to 2.66 · 10 ⁻³ Pa), min, not more than	30
11	Temperature of product heating, °C, max	600
12	Amplitude of product vibration, mm, max	2
13	Range of product vibration frequency, Hz	5–30
14	Power unit with high-voltage power source of 6 kW/60 kV:	
	accelerating voltage, kV	60
	range of welding current control, mA	1-100
15	Cycle of preparation, heating, filling and welding of one product, working shifts	1–2
16	Technical parameters provided by the Customer:	
	• power supply — in accordance with the standard of Germany DIN EN 60 204, item 4.3	380 В, 50/60 Гц
	• power consumption, kV A, not more than	120
	• consumption of cooling water, 1/h	5340
	• temperature of cooling water at the inlet, °C	15–20
	• pressure of cooling water, kg/cm ² , not less than	3
	• pressure of compressed air, kg/cm ² , not less than	5
	• room temperature, °C, not more than	30
	• humidity, %, not more than	70
	• presence of air conditioning	+
	• presence of crane with a load-carrying capacity of at least 1.5 t	+

Basic characteristics of installation KL139