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ACOUSTIC EMISSION METHOD AT EVALUATION
OF THE STATE OF WELDS AND THEIR SERVICE PROPERTIES.
PART 1. EFFECT OF WELDED JOINT TYPE
ON ACOUSTIC EMISSION
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The majority of existing structures have welded joints. It is of considerable interest to determine the differences in
acoustic emission for various types of welded joints and change of the properties of materials in operating structures,
which have welded elements, after long-term service, taking into account the time and probable violation of service
conditions. The data of testing samples from such materials demonstrate the high sensitivity of acoustic emission meth-
od to welded joint type, and to changes of weld service properties. 9 Ref., 2 Tables, 14 Figures.
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Service properties of the material are characteristics,
which are revealed at material operation directly in
the real structures. They are much more diverse that
those, which are determined for the material at stan-
dard laboratory testing of the samples.

Note that the welded joints always are a source of
initiation and development of defects, due to intro-
duction of a great part of the defects into the material
directly during welding, as well as generation of re-
sidual stresses.

Part 1 deals with the features and differences in AE
parameters for welded joints of different types.

Irrespective of the kind of defects in welded joint
area and causes for their appearance, be those pores
(Figure 1), cracks, lacks-of-penetration or another fac-
tor, they are potential sources of material destruction.
In this connection, the welded joint area requires pri-

Figure 1. Pores in the weld, formed because of poor welding
quality

ority control at performance of technical diagnostics.
Determination of the real residual life of the material
and its load-carrying capacity should be also based on
assessment of the life and load-carrying capacity of
the welded joint. Comparison of base metal properties
and those of welded joint metal allows a more accurate
estimate of the controlled product condition than just
monitoring the base metal state. This work deals exact-
ly with these important issues in the following order:

1. Determination of the differences in AE at rupture
testing of samples with welded joints of different types
and selection of the most informative parameter that
characterizes damage accumulation during deformation.

2. Determination of differences in AE for samples
from metal with welded joints from AE for metal
without them. Defining the parameter, which will al-
low determination of presence of welded joints in the
tested sample.

3. Checking the efficiency of algorithms for pre-
diction of the destruction, incorporated into the soft-
ware of EMA type systems, on samples with different
types of welded joints.

It should be noted that this paper generalizes the re-
sults of testing performed in different years using EMA
systems from the 1% to the 3 generations, which have
such differences in presenting the amplitude and noise
characteristics of AE signals, as application of the lin-
ear and logarithmic amplification modes, respective-
ly. Despite that, the objectives set forth in the paper,
have been reached, in particular, due to the fact that, as
shown by the conducted research, the absolute values
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Figure 2. Schemes of welded joints testing (for a—e description see the text)

of AE signal amplitudes are not of principal importance
for evaluation of the state of materials and prediction of
their fracture. Somewhat more important, although not
decisive, either, is the nature of their relative change
during deformation and damage accumulation.

In order to solve the posed tasks, it was proposed
to conduct a number of tests of 17GS steel samples, in
order to reveal the differences in AE parameters, which
develops at fracture of material with different welded
joints. Series of samples with a transverse cut and sever-
al types of welded joints were prepared (Figure 2):

e a — with a transverse weld and two-sided cover
plates welded to the sample surface;

e b — with two-sided cover plates welded to the
sample surface;

e ¢ — with a spot welded joint;

e d — with one-sided transverse weld,;

e ¢ — with two-sided transverse weld.

Welded joints were made by manual electric arc
welding, with 3 mm UONI-13 electrode type.

Standard samples of the first type [1] were used for
AE testing, in order to study the state of pipe materials
(Figure 3). A tensile testing machine R-20 with a hy-
draulic drive was used for sample testing.

AE system EMA-2 with linear layout of a four-trans-
ducer array on the sample was used (Figure 3). Data
processing was performed, using modern EMA-3.92
program. The distance between the transducer centers
was equal to 110 mm, controlled zone was 140 mm (70
mm to the left and right from the sample center). Data
were processed using cluster analysis during testing and
at post-experimental processing. AE events that passed
screening by the coordinate characteristic were com-
bined into clusters. The cluster radius was 20 mm that
allowed tracing AE localization centers along the sam-
ple length within the controlled zone. AE signals were
recorded in the range of 100-1000 kHz.

The most typical test results are presented in the
form of graphs in Figures 4-8. In them blue lines
were used to plot a bar graph of AE event amplitudes
(A, mV), red lines — a linear graph of loading on the
sample (P, kg), black — point chart of «Rise time»
parameter (R, us), which characterizes the time of the
signal rising to a maximum, violet — a linear graph
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of the total number of AE events (N, dimesionless).
The abscissa shows the time from the start of the test.

Testing showed that the highest breaking load of
70-95 kN (7000-9500 kg) is characteristic for sam-
ples of d series, and the lowest of approximately
26 kN (~2600 kg) — for e series. This is quite natu-
ral, as the material cross-section area in the working
part in such a welded joint is smaller than for other
samples. Moreover, off-center tension and bending
are realized simultaneously during sample loading.
The number of AE signals for samples of this series
is small that can be clarified by the following factors:

@ less damage introduced by welding;

e occurrence of the majority of AE events already
during the cracking process, that is indicated by AE
appearance at loads close to breaking ones and high,
close to 500 mV amplitudes that are maximum for AE
instruments of EMA-2 type.

A characteristic feature is absence of the same
acoustic pattern for samples within each of the series,
except for samples with a welded spot in ¢ series and
samples with a two-sided weld of e series.

Samples in b series are the most different. They
failed first in one weld, then in another one. Testing
was interrupted after breaking of one of the welds.
The number of events for these samples differs 4.5
times, and maximum amplitudes — by 2 times.

For samples with the welded spot (series c) and sam-
ples with a two-sided transverse weld (series €) acous-
tic emission was observed in an area of rounding-off
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Figure 3. Sample for conducting testing with application of AE
technology
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Figure 4. Diagrams of testing sample series a
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Figure 5. Diagrams of testing sample series b
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Figure 6. Diagrams of testing sample series ¢
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Figure 7. Diagrams of testing sample series d
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Figure 8. Diagrams of testing sample series e
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Figure 9. Diagrams of testing samples of monolithic metal from 17 GS steel
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Figure 10. Diagrams of testing samples with two-sided welded-on elements
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Figure 11. Diagrams of testing samples with randomly performed weld
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radii on the working part thickening. It is obvious that
for such kinds of welded joints stress concentration in
the weld area was the lowest, resulting in more uniform
deformation of the sample. This led to appearance of
plastic strain zones and beginning of the process of dam-
age accumulation in the area of rounding-off radii, and,
eventually, caused occurrence of AE signals.

A characteristic feature is formation of destruction in
the near-weld zone. As a rule, several centers of AE radi-
ation in the welded joint zone were observed for all the
samples, one of which coincided with the location of the
weld or spot, while others were at a distance of 5-25 mm
from the weld center in the HAZ (Figure 12).

Acoustic signals arriving from the zone of round-
ing-off radii, differ significantly from signals coming
from the welded joint. They are smaller by amplitude
and are associated primarily with plastic strain of the
sample, so that they are more uniformly distributed in
time. AE signals in the welded joint zone are caused
predominantly by defects arising in welding. Their
amplitude is higher, and the nature of their occurrence
is more random. That is why both AE amplitude and
activity allow clearly distinguishing between acoustic
emission from the welded joint area and that in the
plastic strain area.

On the whole, one can see that the nature of AE
signal accumulation in the welded joint material
during sample deformation is the most fully reflected
by such a parameter as total number of AE events (de-
noted by N in the graphs).

In particular, note the change of the slope of the graph
of the above-mentioned parameter for samples with
welded joints that is clearly seen in the graphs, and can
be related to the start of fracture zone formation. If we
compare the shape of N curve of the sum of AE events
for welded joints and for monolithic metal of the same
grade (Figure 9), the difference immediately becomes
obvious: for material with welded joints in the area of
regular AE activity, i.e. when AE events are not isolated
and rather uniformly arise in time, N curve is concave,
and for monolithic material it is convex, on the contrary.
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Figure 12. Screen of EMA-3.92 program with typical results of
AE event location at welded sample testing. Bars with flags show
clusters formed on the base of AE events, colour of strips on the
bars corresponds to a certain amplitude range. AE events proper
(coordinates along the horizontal, and amplitudes along the verti-
cal) are represented by vertical lines below on the location scheme
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Thus, the slope at the turning point of the curve
of AE event accumulation is criterial. It allows dis-
tinguishing the material with the welded joint from
the material without it. This is confirmed by numerous
available data of testing various materials.

In particular, studied were the welded samples pre-
pared by the following procedure: samples after rup-
ture testing (without the welded joint) were welded in
the rupture site. Welded joint quality was chosen to be
arbitrary on purpose, as the samples were used further
to check the fracture loading prediction, so that it is not
known beforehand. 20 samples with both joint types:
two-sided weld and welded spot were prepared. Further-
on samples were tested by the same procedure, as others.
Testing samples of this type is interesting in that AE can
be unambiguously identified as related to welded joint
fracture, as, allowing for the Kaiser effect, the base metal
during deformation should emit a minimum number of
AE events. The difference from the previous test series
consists in that measurements of AE parameters were
taken by EMA-3 system, and AE amplitude is expressed
in decibels, in keeping with application of a logarithmic
mode of signal amplification, unlike EMA-2 system.

Diagrams, shown in Figures 10, 11, represent the
parameters, similar to those given in Figures 48, and
the designations are the same, respectively.

The amount of damage increases with time
(curve N — in the graphs), but in samples without
the welded joint this growth slows down at a certain
moment of time [2—6]. The difference in testing the
welded samples consists in that no decrease in AE
activity is observed for them at the final section of
loading that, actually, gives rise to a change in the
shape of curve N. At the same time, a significant
scatter of such a parameter as «Rise time» suggests
that it cannot serve as a criterial one for the tested
samples. Now, the amplitude of AE events does not
always correlate with the processes of damage ac-
cumulation at fracture, so that it cannot be used as
a versatile criterion either.

The above data relate to steel samples. At some time,
already with application of AE systems EMA-1 based
on «Defectophone» instruments, such studies were con-
ducted for aluminium alloys AMtsS and AMtsN (main
properties of these two materials are very close). Tested
were small-sized samples with different types of raisers
(Figure 13, a) and wide flat samples AR-02 (Figure 13,
b) with special frame structure, designed for equilibrium
deformation [7, 8] of their central part (it allows obtain-
ing the complete diagram of deformation during testing
with the loading branch dropping to zero), with two types
of welded joints — two-sided weld and welded spot (au-
tomatic arc welding with 1.8 mm AMts electrode, 360 A
current, 380 V voltage). Small-sized samples without
the welded joint demonstrated extremely low acoustic
activity of 1 or 2 AE events during the entire testing peri-
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od, and these events occurred directly during sample de-
struction. Even presence of a stress raiser did not affect
the low AE activity. Wide samples without the welded
joint demonstrated somewhat higher AE activity than
the small-sized ones. But it was still essentially lower
than in the majority of the tested steels.

However, presence of the welded joint led to an
essential increase of the number of AE events, which
can be unambiguously related to the volume of ma-
terial, included into the HAZ. Table 1 gives brief
summing-up of testing aluminium samples with max-
imum number of registered AE events.

The results of all the described tests show that the
welded joint is the main source of AE that is recorded
during loading, while the number of events depends
on the volume of the material included into the HAZ.
Another feature is absence of AE up to the moment,
when the process of sample destruction starts concen-
trating in the welded joint zone.

During testing the prediction of breaking load of
welded samples by EMA-3.92 software was verified.
A typical fragment of program window with hazard
indicator, which displays the prediction results, is
shown in Figure 14. Explanations for the location ar-
ray screen are given in the description for Figure 9.
Elements of testing control and timer are shown above
the location screen, and indicator strip with predicted
breaking load is displayed below.

Hazard indicator gives the number of location AE
array (No.1 in this case), number of AE event cluster,
for which the prediction was made (No.1) and its center
coordinates (182 mm), which are calculated from No.1
transducer from left to right. Furtheron, fracture predic-
tion is shown in kg, in keeping with the tensile testing
machine scale, as well as the calculated damage level of
the sample material expressed in percent, at the moment
of issuing the maximum warning No.3 — «Hazard».

Table 2 gives the selected results of breaking load
prediction for samples without the welded joint and
with joints of different types. It does not seem possi-
ble to present all the obtained data in view of the large
amount of them. The necessary regularities can be
quite clearly seen, analyzing those data, which were
included into Table 2.

As one can see from Table 2, for the majority of the
samples, the real breaking load falls within the predic-
tion range. Samples of series b, ¢, and d are an excep-
tion, for which the prediction is higher than the real val-

Table 1. Final results of testing aluminium alloys AMtsS and
AMtsN

AR-02
Small- H H
Sample type ) ) With With
sized | Unwel welded |two-sided
ded
spot weld
Number of AE events 2 28 398 438
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Figure 13. Samples for aluminium alloy testing: a — samples
with different types of raisers; b — wide flat samples (1 — spring
dynamometer; 2 — welded joint area; 3 — AE transducer; 4 — 12
openings of 12 mm dia with 26 mm distance between them)

ues of breaking load. And even though the lower limit
of the prediction falls within the deviation of +15 % ad-
missible for EMA type systems, the upper limit signifi-
cantly exceeds it. Let us analyze why such a phenom-
enon is in place exactly for samples of the mentioned
series. The most obvious conclusion is that the samples
of these series during testing are subjected to off-center
tension. At the same time, the prediction algorithms,
incorporated into EMA system software, were based on
standards, which envisage the traditional uniform load-
ing of rod samples or tube-shell structures [9]. Thus,
in order to adjust the destruction prediction for cases
of off-center tension, additional study is needed, which
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Figure 14. Screen of EMA-3.92 program with the results of AE
event location and prediction of breaking load at testing one of
the samples
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Table 2. Results of prediction of breaking load of steel samples

Number of Current load, Fracture pre-|Fracture pre-
Time of Time of at which Level of o P . P Actual
. AE events, L diction — | diction — .
Sample type and number predicted fracture . prediction hazard . - breaking
used in . lower limit, | upper limit,
fracture, s start, s . was made, | warning load, kg
prediction kg kg kg
Without WJ No.1 352 1153 27 5907 1 8787 15424 10039
Without WJ No.2 249 836 12 4738 1 6857 12036 10211
Series a No.1 402 991 11 4065 1 5814 10205 6914
Series b No.1 1005 1297 7 3702 1 4812 9207 4342
Series ¢ No.1 248 392 13 2734 2 3731 4305 3305
Series d No.1 189 290 4 1956 1 2866 5031 2615
Series e No.1 230 855 3 2936 1 4733 8307 8105
Two-sided welded element No.1 71 228 7 2250 2 3217 5647 5610
Weld of undetermined quality No.1 68 155 8 2600 2 3718 6526 4820

would allow obtaining more valid prediction results ei-
ther by establishing special coefficients for such a kind
of loading, or through adding new standards, on which
identification of material state is based.

At the same time it should be noted that the detect-
ed prediction error is not critical, firstly, because the
lower limit of predicted breaking load falls within the
admissible error range, secondly because the hazard
warning which is represented by the red colour of the
indicator (see Figure 13), is generated by EMA-3.92
program in advance, before the material yield limit
has been reached.

Thus, even without making corrections in predic-
tion setting, EMA type systems can provide timely
warning about the danger of welded joint breaking up.

Conclusions

1. In the presence of a welded joint in the sample, it
is the main AE source. Number of AE events in the
samples with welded joints, as a rule, is higher than
that in monolithic samples.

2. The process of welded sample destruction is
characterized by a more uniform in time AE activity
in samples with largest volume of welded joint mate-
rial and less uniform for samples with a smallest vol-
ume of welded joint material.

3. The maximum number and amplitude of AE events
correspond to largest volumes of welded joint material,
which one can see at comparison of the results of testing
samples of a, ¢ and e series with those of b and d series.

4. Samples with welded joints are characterized by
greater diversity of the obtained pattern of AE event
distribution in time, amplitude and other characteristics
for unwelded samples that is indicative of the influence
of welded joint quality on the amount of damage intro-
duced by them into the material. AE activity depends on
the level of material damage, caused by welding.

5. The breaking load prediction for the majority of
the samples gives satisfactory values. For samples of

52

b, c and d series subjected to off-center tension during
testing, the destruction prediction yields somewhat
higher breaking load values. This should be taken into
account at testing structures, where such a kind of
welded joint loading is in place.

6. The sum of AE events is the parameter which
can serve the characteristic of damage of welded joint
metal. The angle of inflexion of the curve of AE event
sum allows distinguishing between testing monolithic
metal and metal with welded joint. Ability to assess
the volume of metal involved in welding can increase
the validity of this characteristic application.
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