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ABSTRACT
A multiscale procedure was proposed for modeling the kinetics of stress-strain state of large-sized structures during site weld-
ing. This procedure is based on finite element solution of nonstationary thermoplasticity problems, characteristic for fusion 
welding technologies, at the mesoscale level with fine spatial breakdown of the region and with subsequent transfer of a certain 
amount of calculation data into a macroscopic model of a large-scale structure. Algorithms of the respective averaging of the 
properties and stress-strain state parameters are proposed for this purpose, which allows performing analysis of large-sized 
structures during welding without the need to involve significant computing power. A characteristic example of site welding of 
a cylindrical structure of a large diameter is used to show the applicability of the developed approach for prediction of spatial 
distribution of stresses and strains. Here, the most effective method is calculation of the stress fields, where a much greater 
sparseness of the spatial breakdown can be achieved, while calculation of the strained state is much more sensitive to finite 
element size.

KEYWORDS: large-sized structures, welding, stress-strain state, mathematical modeling, multiscale method, resource inten-
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INTRODUCTION
Solution of the characteristic problems of optimiza-
tion of the technological processes of site welding of 
large-sized structures is related to a number of ob-
jective difficulties because of the length of the welds, 
and, at the same time, local influence of welding 
heating. In particular, a necessary step is prediction 
of the current and residual stress-strain state (SSS) 
of the structures, which is due to the need to guaran-
tee the admissibility of their shape change, local re-
sistance and resistance to different types of fracture 
[1‒3]. Experimental determination of development 
of the temperature, stress and strain fields in weld-
ing, in order to guarantee the proper quality of the 
end product, is made more complicated by material 
consumption of the structure and significant associ-
ated financial costs, so that application of modern 
methods of numerical modeling of the welding pro-
cesses is rational. It allows establishing the qualita-
tive and quantitative regularities of the influence of 
welding on the state of a specific structure, both at 
mounting, and in further operation.

Appearance of new methods of prediction of the 
state of large-sized structures, including those with a 
large number of welds, corresponds to development 
of understanding of physical-mechanical processes 
in continuous media, mathematical models, describ-
ing them, numerical methods and computer technol-
ogies. Modern principles of discrete description of 

the kinetics of nonstationary multiphysical processes 
(primarily, by finite element methods) provide ample 
possibilities for solving the fundamental and applied 
problems. The adequacy and accuracy of the obtained 
numerical results depends, in particular, on the fine-
ness of spatial breakdown, i.e. size of the finite el-
ement (FE), which is sufficient to obtain the exact 
solution of the necessary differential equations in the 
difference formulation of the problem [4]. However, 
as regards numerical description of the state of large-
sized structures in welding, it means an excessive re-
source intensity of the problems, as, on the one hand, 
the high gradient of temperatures, stresses and strains 
in the welding area requires fine spatial breakdown, 
which cannot be used over the entire structure, and 
on the other hand, the great difference in FE dimen-
sions leads to instability of the schemes of solving the 
respective boundary problems [5]. This caused devel-
opment of simplified models, which allow describing 
with the required accuracy the separate technological 
and physical-mechanical processes in welding and re-
lated processes.

In particular, the methods of inherent strain or 
shrinkage functions became widely accepted for pre-
diction of residual shape change of large-sized struc-
tures as a result of site welding [6, 7]. This class of 
methods involves the assumption that the residual 
plastic strains, caused by welding (precalculated or 
experimentally measured) can be assigned as the ini-
tial state of a specific structure, which is particularly 
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convenient in the case of presence of a large number 
of similar welds: in ship plating, stringer panels, etc. 
[8‒10]. The disadvantage of the above methods is the 
fact that they do not allow following the current SSS 
of the structures during welding, but consider only the 
problem of the residual strained state. Moreover, in 
the absence of data on the kinetics of the temperature 
field and strained state during welding, objective dif-
ficulties arise in determination of the effective region 
for assigning the initial integrated or distributed plas-
tic strains in the weld metal and HAZ. So-called 2D-X 
models allow modeling of the current state of large-
sized structures [11], however, their applicability is 
quite limited. Therefore, further development of the 
numerical methods of prediction of the current SSS 
of large-sized structures during site welding is prac-
tically important, in particular, in the case of typical 
cylindrical pressure vessels, which is the purpose of 
this work.

As it was said above, one of the features of the 
state of large-sized structures in welding is the dif-
ferent scale of physical-mechanical processes in the 
welding area and on the periphery. This complicates 
the numerical realization of the respective mathemat-
ical models by the common methods, but it makes 
application of multilevel multiscale models rational. 
So, development of temperatures and SSS is of a lo-
cal nature in welding, and it can be described by joint 
models of heat conductivity and elasto-plastic medi-
um. For a range of cases, the local current and residual 
distributions of stresses and strains can be described 
within the simplified two-dimensional models, which 
allows application of small FE for their description 
without any significant increase of the calculation 
time. Transfer of a certain array of calculated data 
to the full three-dimensional model of a large-sized 

structure with its own finite element breakdown (such, 
which allows conducting the respective real-time cal-
culations) with further calculation of the general SSS 
is formalized by the algorithm of multiscale intercon-
nection between the calculation levels.

So, within the scope of this work, two scale lev-
els were considered, which are typical for the prob-
lems of prediction of the kinetics of temperature and 
stress-strain states of large-sized structures, namely 
the mezolevel, on which the welding processes are 
usually described, with the characteristic spatial scale 
of approximately 1 mm, and the macrolevel, which 
is characteristic for the problems of deformation of 
large-sized structures with the spatial scale of 1 cm 
and more. A finite element solution of the respective 
joint interrelated problems was used for a numerical 
description of the kinetics of the nonstationary tem-
perature and stress-strain states in the site welding 
region. The respective algorithms and mathematical 
formulations are a development of complex approach-
es developed by the authors [12–14], in the context of 
a multiscale problem statement.

So, the kinetics of the temperature field was pre-
dicted by a numerical solution of a nonstationary 
heat-conductivity equation of a fast-moving heat 
source in the two-dimensional approximation. It al-
lowed not only taking into account the temperature 
dependencies of heat conductivity and heat capacity 
of the structure material, but reduce as much as possi-
ble the spatial breakdown of the calculation area with-
out any essential increase of calculation time.

Based on the calculated temperature fields in the 
structure cross-section at its site welding, the bound-
ary problem of nonstationary thermoplasticity of the 
structure material was formulated with the respec-
tive finite element realization based on eight node FE 
(Figure 1). So, increment of the strain tensor can be 
presented in keeping with following expression:

	
d d d d ,e p

ij ij ij ij Tε = ε + ε + δ ε
	 (1)

where d e
ijε ; d p

ijε ; δij dεТ are the components of strain 
tensor increase due to the elastic deformation mecha-
nism, instant plasticity strains and kinetics of the non-
uniform temperature field, respectively.

Strain increase, which is due to the kinetics of tem-
perature T, is equal to

	 dεT = α dT,	 (2)

where α is the coefficient of linear temperature expan-
sion of the material.

The tensors of mechanical stresses σij and elastic 
strains d e

ijε  are related to each other by the general-
ized Hooke’s law, i.e.Figure 1. Scheme of an eight-node finite element in a cylindrical 

system of coordinates
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 is the shear 

modulus; E is the Young’s modulus; v is the Poisson’s 
ratio; ν is the bulk strain.

Depending on the stressed state in a specific FE, in-
crease of instant plasticity strains d p

ijε  can be calculated, 
using a linear dependence of scalar function Λ and devi-
ator component of the stress tensor, namely [12]:

	 d d ( )p
ij ij ijε = Λ σ − δ σ .	 (4)

Quantitative value of function Λ depends on the 
stressed state in the considered area of the structure, 
as well as on the shape of material yield surface Ф, 
which is characterized by yield limit sy:
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where 1
2i ij ijσ = σ σ  is the stress intensity.

The strain tensor growth can be presented in the 
form of superposition of the increase of the respective 
components [13]:
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where dij is the Kronecker symbol, “*” refers the re-
spective variable to the previous tracking step; Ψ is 
the material state function, which determines the plas-
tic flow condition according to Mises criterion:
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(7)

Determination of Ψ function is performed by iter-
ation at each step of numerical tracking (by time or by 
loading increase), which allows solving the non-lin-
earity by the plastic flow of the material. Based on 
the specific meaning of Ψ function from (7), the strain 
field is determined at each loading step, taking into 
account σy(T) dependencies:

	
( )1

ij ij ijG
 ∆ε = Ψ − σ − δ σ 
 

.	 (8)

Here, at each step of iteration by Ψ, stresses σij are 
calculated according to the following algorithm (sum-
ming up is performed by the repeating indices) [14]:
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(10)

The connection between the components of strain 
tensor Δεij and displacement increment vector ΔUi has 
the following mathematical expression:

	

, ,

2
i j j i

ij
u u∆ + ∆

∆ε = ,	 (11)

where the comma denotes differentiation within FE.
The stress tensor components satisfy the equations 

of statics for internal FE and the boundary conditions 
for the surface elements. In their turn, the components 
of ΔUi = (ΔU, ΔV, ΔW) vector meet the corresponding 
conditions on the boundary.

The solved system of equations in the variables of 
displacement increment vector in FE nodes at each 
step of tracking and iteration by Ψ is determined by 
minimizing the following functional (Lagrangian 
variational principle):

( ) , ,
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where 
V
∑  is the operator of the sum of internal FE; 

PS
∑  is the operator of the sum of surface FE, on 
which the components of force vector Pi are assigned, 
i.e. the subsequent system of equations allows deriv-
ing the solution in the components of the displace-
ment increment vector at each step of tracking and 
iteration by Ψ for a specific FE:
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At consideration of cylindrical structures with a 
circumferential weld, the assumptions of a two-di-
mensional model of a plane stressed state can be used. 
In such a description the stress tensor sij (i, j = r, b, 
z) includes four nonzero components srr, szz, sbb, srz. 
Strain increase tensor Δεij contains similar nonzero 
components. The components of this tensor are con-
nected with the components of displacement increase 
ΔUr and ΔUz by the following relationships:

	

r
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u
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∂
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zz
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∂∆
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∂
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The connection between sij and Δεij can be de-
scribed as follows:

	 σrr = A1 ∆εrr + A2 (∆εββ + ∆εzz) + Yrr,
	 σββ = A1 ∆εββ + A2 (∆err + ∆εzz) + Yββ,
	 σzz = A1 ∆εzz + A2 (∆εrr + ∆εββ) + Yzz,

	 (15)
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Equations (15), (16) form a system of linear alge-
braic equations for strains (displacements), which is 
the base of finite element realization of the numerical 
solution.

As noted above, application of a similar approach 
for description of the temperature state, current and 
residual SSS of a large-sized structure based on fine 
spatial breakdown is complicated or impossible, be-
cause of an excess resource consumption of such a 
problem. However, increase of the steps of spatial 
breakdown in the macroscale approach can lead to a 
loss of accuracy of the calculation model right up to 
a significant distortion of the results. Therefore, the 
results obtained in keeping with the mezoscale cal-
culation were used as the initial data for macroscale 
calculation, but taking into account the integral in-
terpretation required for it. That is, in order to track 
the state of one FE of the macroscopic problem it is 
necessary to use an averaged state of several FE of the 
mezoproblem during the entire technological cycle of 
site welding. The result of such averaging should be 
the integral values of mechanical properties of the 
material of a nonuniformly heated structure and pa-
rameters of its current deformed state. So, a simpli-
fied approach can be used for averaging the material 
mechanical properties, namely Young’s modulus, the 

coefficient of linear thermal expansion and yield limit, 
similar to the rule of mixtures. This is substantiated 
by the characteristically small gradients of proper-
ties at distances of the order of FE size, that is nec-
essary for a stable solution of the boundary problem 
of nonstationary thermoplasticity in the definition of 
(1)‒(13). Therefore, if the state of mn element in the 
macroproblem is described by several elements ij in 
the mezoscale definition, the respective mechanical 
characteristics can be evaluated as follows:

	

( ) ( )
, ,

ij ij ij ij
i j i j

mn mn
ij ij

i j i j

E T s T s
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α
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∑∑ ∑∑

	

(17)

where sij is the area of ij-th FE; Tij is the temperature 
in ij point; “ ′ ” refers the parameter to the macro-
problem.

It should be noted that relationship (17) was for-
mulated in a two-dimensional definition, but averag-
ing from a two-dimensional to a three-dimensional 
problem can be realized similarly.

Development of SSS in a macroscopic definition 
requires allowing for the force factor, namely nonuni-
form deformation of the material. In order to calculate 
the distribution of the current and residual SSS, which 
satisfies the condition of equilibrium (13) and does not 
get any significant distortion on coarse spatial grids, 
the following spatial averaging was proposed for the 
numerical components of the matrix (15)‒(16) and 
material state function Ψ, defined according to (7):

	

, 1, 2, 3;

; .

k mn ij
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(18)

Solution of the system of linear algebraic equa-
tions (15) in the framework of formulation of a mac-
roscopic problem of SSS allows obtaining equilibrium 
distributions of the structure stress and strain fields at 
each tracking step.

The limits of applicability and features of the 
developed multiscale approach were studied on the 
characteristic example of site welding of circumfer-
ential joints of a cylindrical structure from AMg6 alu-
minium alloy (E = 71 GPa, v = 0.3, σy = 170 MPa, a = 
= 2.26∙10-–5 1/°C at 20 °C) of diameter D = 3900 mm 
and with wall thickness t = 10 mm; welding was per-
formed in the following mode: U = 20 V, I = 380 A, 
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vw = 2.23 mm/s. It should be noted that selection of 
the studied structure corresponds to the typical struc-
tural solutions for space applications, in particular, 
rocket-carrier fuel tanks, although the versatility of 
the proposed approach allows consideration of a wide 
range of materials, structural elements and welding 
technologies.

The mezoscale definition was realized within the 
joint solution of the problem of temperature field ki-
netics in welding and development of an elastoplastic 
deformed and stressed states of the structure in the 
area of the joint in the two-dimensional definition, 
which allowed application of fine and regular spa-
tial finite element breakdown with the linear size of 
the element hr = hz = 1 mm in the radial and axial 
directions. At formulation of the three-dimensional 
problem the linear size of finite elements in the ra-
dial and axial directions was multiplied by 2, 4 and 8 
times, and the stress and strain fields, obtained within 
the multiscale formulation of the problem and direct 
three-dimensional modeling with spatial step hr = 
= hz = hb = 1 mm, were compared.

As shown in Figure 2, comparisons of the calcu-
lated distributions of circumferential σbb and axial σzz 
stresses for different macroscale spatial breakdown 
confirm the high degree of correspondence of the re-
sults of multiscale modeling to direct calculations. 
Significant differences appear, when the characteristic 
spatial distribution of local stresses becomes small-
er than one step of the macroscale problem, where 
the respective averaging takes place (in particular, at 
hz increase up to 8 mm). Here, in other structure ar-
eas, where the residual stress gradient is less signif-
icant, the correspondence of the calculations by two 
approaches is high (error of less than 2 %). Such an 
accuracy of the multiscale approach is related to the 
physical essence of mathematical formulation (18), 
namely transfer of the averaged internal energy of 

the deformed material. It allows application of the 
proposed procedure for analysis of the stressed state 
of large-sized welded structures, in particular under 
the impact of complex operational load, as well as 
for brittle strength analysis. It should be noted that 
the maximum value of residual stresses is somewhat 
higher than the room temperature material yield limit. 
It is attributable to the fact that the cylindrical struc-
ture is characterized by a two-axial stressed state, so 
that the stress intensity value σi is somewhat lower 
than some individual components of the stress tensor,  
but σi itself determines the material flow surface F, in 
keeping with the Mises yield condition, in particular 
in the form of (5).

 Similar calculations of strain field kinetics showed 
that the influence of multiscale approach on the error 
of the results of prediction of the residual deformed 
state is significantly higher (Figure 3). So, increase of 
hr within the selected range only slightly influences 
the calculated value of circumferential strains ebb (the 
error is equal to approximately 1.7 %), whereas for 
longitudinal strains ezz the satisfactory result of mul-
tiscale modeling is observed for a slight increase of 
spatial breakdown (two times up to 2 mm size). The 
conclusion about the relatively low possibilities for hz 
increase is similar: rarefaction of spatial breakdown 
up to 4 times allows obtaining a satisfactory value of 
multiscale prediction error ebb (error of less than 7 %), 
while for obtaining correct results for ezz, hz increase 
should not be greater than 2 times up to 2 mm size.

Such analysis results are explained by that one 
of the main assumptions of finite element modeling 
is the uniformity of properties of each of the FE. A 
significant increase of element size leads to incorrect 
definition of the problem, which is manifested, pri-
marily, in the strain field not corresponding to the true 
solution on fine meshes. This instability, however, 
corresponds, first of all to the deformed state in the 

Figure 2. Calculated distribution of residual postweld circumferential σbb (a) and axial σzz (b) stresses: 1 — control 3D calculation at 
hr = hz = hb = 1 mm; 2 — multiscale calculation at hr = 4 mm; hz = hb = 1 mm; 3 — multiscale calculation at hr = 8 mm, hz = hb = 1 mm; 
4 — multiscale calculation at hz = 4 mm, hr = hb = 1 mm 5 — multiscale calculation at hz = 8 mm; hr = hb = 1 mm (in Figure 2, a, curves 
1, 2 and 3 practically coincide)
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axial direction, where the maximum strain gradient is 
observed, whereas for ebb and stressed state the possi-
bilities for optimization of calculations for large-sized 
structures by application of the proposed multiscale 
approach are much higher.

As shown by calculations, simultaneous increase 
of spatial steps in the radial and axial directions only 
slightly changes the made conclusions, as the instabil-
ity of individual solutions as a result of rarefaction in 
the axial direction prevails.

Despite the fact that in this work a concrete case of 
a welded large-sized structure from an aluminium al-
loy was considered, the derived results are sufficiently 
general to enable a wider application of the developed 
procedure and general recommendations for the cases 
of structures from other materials, of different geomet-
rical dimensions, or those manufactured with applica-
tion of other technologies or modes of site welding. 
A fundamental difference will be in the current and 
residual stress and strain gradients, which will deter-
mine the admissible linear averaging size (17), (18). 
For instance, reduction of the HAZ (at application of 
smaller heat input or at lower heat conductivity of the 
material of the large-sized structure) will determine 
the proportionally smaller size of spatial breakdown 
of the macroscopic problem in the welding area, but 
larger on the periphery, where the respective stress 
and strain gradients will be significantly smaller.

Conclusions
1. In order to develop efficient methods of analysis of 
the technological processes of welding without any 
significant increase of resource intensity of the respec-
tive calculations, a multiscale approach of numerical 
prediction of the kinetics of temperatures and stress- 
strain state was proposed. This procedure is based on 
finite element solution of the problems of nonstation-
ary thermoplasticity, characteristic for fusion welding 
technologies, on the mezoscale level with fine spatial 
breakdown of the structure in a two-dimensional defi-

nition with subsequent transfer of a certain volume of 
the calculation data into a three-dimensional macro-
scopic model with a sparse mesh. For this purpose, the 
algorithms of the respective averaging of the proper-
ties and parameters of the stressed-strained state were 
proposed, which allows conducting analysis of the 
state of large-sized structures during welding without 
the need to involve considerable computing power.

2. The high correspondence of the results of finite 
element calculations of the stressed state within the 
developed model and control calculations by standard 
approaches was demonstrated in the case of site weld-
ing of a circumferential weld of a large-sized pressure 
vessel from AMg6 aluminium alloy. It is shown that a 
significant increase (up to eight times) of spatial finite 
element breakdown is possible, until the characteristic 
spatial breakdown of local stresses becomes smaller 
than one step of the macroscale problem, where the 
respective averaging takes place.

3. It is shown that the possibilities of application of 
the proposed approach for prediction of the deformed 
state of large-sized structures are limited as a result of 
shrinkage processes at nonuniform heating in weld-
ing. This is due to high calculated strain gradients, 
particularly in the axial direction. In such a case, spa-
tial averaging of the properties of the material of the 
structure being welded, may lead to convergence of 
the problem within the finite element definition, and 
to a wrong solution.
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