CONTENTS

SCIENTIFIC AND TECHNICAL

Taraborkin L.A. and Golovko V.V. Calculation model of formation of nonmetallic inclusions of multilayer morphology in weld metal 2

Markashova L.I., Poznyakov V.D., Shelyagin V.D., Berdnikova E.N., Bernatsky A.V. and Alekseenko T.A. Effect of metal structure on service properties of high-strength steel welded joints produced using different methods of welding ... 7

Knysh V.V., Solovej S.A., Nyrkova L.I. and Miryanin V.N. Influence of corrosion damage on cyclic life of butt welded joints strengthened by high-frequency mechanical peening ... 14

Stefaniv B.V. and Sabadash O.M. Effect of structure of joint zone of diamond layer with hard-alloy substrate of brazed cutters on their service life .. 19

INDUSTRIAL

Kuzmenko G.V., Taganovsky V.M. and Sidorenko V.L. Electric arc welding and surfacing in repair of rails of Kyiv underground 23

Poznyakov V.D., Demchenko Yu.V., Denisenko A.M., Zhuk G.V. and Kozirev V.B. Application of welding for restoration of cast iron railing of the Kotzebue Bridge in Odessa ... 26

Kuskov Yu.M., Soloviov V.G., Oshechkov P.P. and Osin V.V. Electroslag surfacing of billet end faces with application of consumable and nonconsumable electrodes ... 38

INFORMATION

Laser Technology and Equipment for Manufacture of Multilayer Bellows .. 42

Unit for Manual Laser Welding .. 43

Laser Welding of Body Elements with Loose Edges 43
LASER TECHNOLOGY AND EQUIPMENT FOR MANUFACTURE OF MULTILAYER BELLOWS

PWI has developed the technology and equipment for laser welding of thin-wall pipes of stainless steel for manufacture of multilayer bellows, which carry and divide liquid and gaseous media, including aggressive ones.

Following the developed technology the bellow consists of several laser-welded thin-wall pipes (from 3 to 10 layers) of 0.15–0.20 mm thickness each. The bellow will keep working capacity in such a multi-layer bellow structure, even if one welded joint breaks in process of operation.

Development advantages:

- reduced amount of rejects from 50% in argon-arc welding to 0.5 % in laser welding
- 4 times rise of productivity
- cyclic strength, corrosion resistance and other characteristics of laser-welded multilayer bellow 1.5–4 times exceed the characteristics of single layer bellow made by argon-arc welding (depending on number of layers and bellow sizes).
UNIT FOR MANUAL LASER WELDING

PWI by the order of carriage works (Changchun, China) has developed the unit for manual laser welding of car elements of modern high-speed trains. Weight-dimensions characteristics of the developed tool allow welding in different spatial positions. Carried metallographic investigations and mechanical tests of the welds produced with developed manual laser tool showed that the level of mechanical characteristics of given welded joints are as good as characteristics of the joints made using automatic laser welding.

LASER WELDING OF BODY ELEMENTS WITH LOOSE EDGES

A technology for brazing of body elements of filters of 0.5–0.6 mm thickness stainless steels for paints and lacquers was replaced with laser welding using filler material in form of metallic powder. As a result, amount of defective products became 10 times smaller (spoilage in laser welding is 0.5 %). Strength and corrosion resistance of the joint is on the level of body base metal.

Developed by the E.O. Paton Electric Welding Institute of the NAS of Ukraine. E-mail: office@paton.kiev.ua
SUBSCRIPTION

«The Paton Welding Journal» is Published Monthly Since 2000 in English, ISSN 0957-798X, DOI: http://dx.doi.org/10.15407/tpwj.
«Avtomaticheskaya Svarka» Journal (Automatic Welding) is Published Monthly Since 1948 in Russian, ISSN 005-111X, DOI: http://dx.doi.org/10.15407/as.

If You are interested in making subscription directly via Editorial Board, fill, please, the coupon and send application by Fax or E-mail.

«The Paton Welding Journal» can be also subscribed worldwide from catalogues subscription agency EBSO.

SUBSCRIPTION COUPON
Address for journal delivery

<table>
<thead>
<tr>
<th>Term of subscription since</th>
<th>20</th>
<th>till</th>
<th>20</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name, initials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affiliation</td>
</tr>
<tr>
<td>Position</td>
</tr>
<tr>
<td>Tel., Fax, E-mail</td>
</tr>
</tbody>
</table>

We offer the subscription all issues of the Journals in pdf format, starting from 2009.
The archives for 2009–2016 are free of charge on www.patonpublishinghouse.com site.

ADVERTISEMET

in «Avtomaticheskaya Svarka» and «The Paton Welding Journal»

External cover, fully-colored:
- First page of cover (190×190 mm) — $700
- Second page of cover (200×290 mm) — $530
- Third page of cover (200×290 mm) — $500
- Fourth page of cover (200×290 mm) — $600

Internal cover, fully-colored:
- First/second/third/fourth page of cover (200×290 mm) — $400

Internal insert:
- Fully-colored (200×290 mm) — $340
- Fully-colored (double page A3) (400×290 mm) — $500

- Article in the form of advertising is 50% of the cost of advertising area
- When the sum of advertising contracts exceeds $1001, a flexible system of discounts is envisaged

Size of journal after cutting is 200×290 mm

Editorial Board of Journals «Avtomaticheskaya Svarka» and «The Paton Welding Journal»
E.O. Paton Electric Welding Institute of the NAS of Ukraine
International Association «Welding»
11 Kazimir Malevich Str. (former Bozhenko Str.), 03150, Kiev, Ukraine
Tel.: (38044) 200 60 16, 200 82 77; Fax: (38044) 200 82 77, 200 81 45
E-mail: journal@paton.kiev.ua; www.patonpublishinghouse.com