Print

2017 №01 (01) DOI of Article
10.15407/sem2017.01.02
2017 №01 (03)


Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #1, 9-14 pages

Structure and properties of high-strength titanium alloy Ti-10-2-3 of electroslag remelting

Protokovilov I.V., Petrov D.A.


E.O. Paton Electric Welding Institute, NASU. 11 Kazimir Malevich Str., 03680, Kiev, Ukraine. E-mail: office@paton.kiev.ua

Results of investigations of chemical composition, structure and mechanical properties of high-strength titanium alloy Ti-10-2-3 in as-cast state and after thermomechanical treatment are given. Ingots were produced by remelting of consumable electrodes in a chamber-type electroslag furnace using the electromagnetic effect on the metallurgical pool. The cast metal was subjected to the thermal deformational treatment with a subsequent hardening and ageing. Analysis of metal structure did not reveal internal macro-and microdefects. Grain size of cast metal was on average 1…6, while that of deformed and heat-treated ones was 0.2…0.5 mm. In cast state the alloy strength was 936…1012 MPa at ductility of 1.7…12.5 %, while in heat-treated state it was 1190…1210 MPA and 11.7…14.9 %, respectively. The investigations of fracture surface of specimens after tensile tests revealed the dominating nature of a tough fracture. It is shown that as to the structure, chemical composition and mechanical properties the titanium alloy Ti-10-2-3 of the electroslag remelting meets the technical specifications for the given material. Ref. 6, Tables 2, Figures 8.

Keywords: electroslag remelting; electromagnetic effect; titanium alloy Ti-10-2-3; ingot; thermomechanical treatment; structure; mechanical properties

References

1. TIMETAL 10-2-3. Elektronny resurs. Rezhim dostupa http:// www.timet.com/images/document/ingot/TIMETAL_10-2-3.pdf
2. Ilyin A. A., Kolachev B. A., Polkin I. S. Titanovye splavy. Sostav, struktura, svoystva. Spravochnik.- M.: VILS- MATI, 2009.- 520 s.
3. Ishunkina T. B. (1990) Beta-titanovye splavy. Tekhnologiya legkikh splavov, 10, 56-70.
4. Khopev A. I. (2007) Teopiya i praktika sozdaniya sovpemennykh titanovykh splavov dlya perspektivnykh konstpuktsy. Tekhnologiya mashinostroyeniya, 12 (66), 5-12.
5. Kompan Ya. Yu., Protokovilov I. V., Nazarchuk A. T. (2008) Melkozernistye slitki mnogokomponentnykh titanovykh splavov. Teoriya i praktika metallurgii, 2, 35-40.
6. Protokovilov I. V., Petrov D. A., Porokhonko V. B. (2016) Elektroshlakovaya vyplavka i termomekhanicheskaya obrabotka vysokoprochnogo titanovogo psevdo gamma-splava TS6. Sovremennaya elektrometallurgiya, 3, 16-20. https://doi.org/10.15407/sem2016.03.03