Print

2017 №04 (03) DOI of Article
10.15407/sem2017.04.04
2017 №04 (05)


Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2017, #4, 28-36 pages


Refining of iron-carbon melts from copper by the method of sulphurizing

Yu.V. Kostetsky


E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazimir Malevich Str., 03150, Kiev, Ukraine. E-mail: office@paton.kiev.ua

Results of experimental investigations on refining the iron-carbon melts from copper by the method of sulphurizing are given. During laboratory studies two variants of sulphide treatment of liquid metal using sulphur and sodium were tested. It was found that the metal refining from copper occurs both in case of sodium filler into a metal, preliminary saturated with sulphur, and also at a combined introducing of sulphur and sodium into mixture composition. For the variant of treatment with sodium introducing into the saturated liquid metal with suphur the effect of specific consumption of this reagent on the degree of metal refining from copper was determined. Technique of the sulphide refining using mixtures of sulphur and sodium was tested in experimental-industrial conditions. Experimental melting with treatment of molten cast iron with such a mixture showed a possibility to decrease the copper concentration in metal from 0.5...1.0 % to values, not exceeding 0.3 %. This technique can be used for the development of the industrial technology of refining the iron-carbon melts from copper. The technological aspects of organizing the process of refining and technological process of steel production from metal scrap, contaminated with copper, were discussed. 33 Ref., 2 Tables, 1 Fig.
Key words: metal scrap; iron-carbon melt; refining; copper; sulphides; sodium
 
References
 
  1. Birat, J. P. (2001) Sustainable steelmaking paradigms for growth and development in the early 21st century. Revue de Metallurgie, 98(1), 19–40. https://doi.org/10.1051/metal:2001155
  2. Pauliuk, S., Milford, R.L., Muller, D.B., Allwood, J.M. (2013) The steel scrap age. Environmental Sci. & Technology, 47(7), 3448–3454. https://doi.org/10.1021/es303149z
  3. Yellishetty, M., Mudd, G. M., Ranjith, P. G., Tharumarajah A. (2011) Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects. Environmental Sci. & Policy, 14(6), 650–663. https://doi.org/10.1016/j.envsci.2011.04.008
  4. Oda, J., Akimoto, K., Tomoda, T. (2013) Long-term global availability of steel scrap. Resources, Conservation and Recycling, 81. https://doi.org/10.1016/j.resconrec.2013.10.002
  5. Daehn, K. E., Cabrera Serrenho, A., Allwood, J. M. (2017) How will copper contamination constrain future global steel recycling? Environmental Sci. & Technology, 51(11), 6599–6606. https://doi.org/10.1021/acs.est.7b00997
  6. Nakajima, K., Takeda, O., Miki, T. et al. (2011) Thermodynamic analysis for the controllability of elements in the recycling process of metals. Ibid., 45(11), 4929–4936. https://doi.org/10.1021/es104231n
  7. Rod, O., Becker, C., Nylen., M. (2006) Opportunities and dangers of using residual elements in steels: a literature survey. Jernknotoret Report 88042, 1–59.
  8. Guzenkova, A.S., Ivanov, S.S., Isaev, G.A. et al. (2008) Production of steel without impurities of non-ferrous metals. by V.A. Kudrin. Moscow, MGVMI [in Russian].
  9. Bjorkman, B., Samuelsson, C. (2014) Chapter 6 — Recycling of steel. In: Handbook of Recycling, 65–83. https://doi.org/10.1016/B978-0-12-396459-5.00006-4
  10. Harada, T., Tanaka, H. (2011) Future steelmaking model by direct reduction technologies. ISIJ International, 51(8), 1301–1307. https://doi.org/10.2355/isijinternational.51.1301
  11. Shakhpazov, E.Kh., Zajtsev, A.I., Mogutnov, B.M. (2010) Scientific basics of steel refining from copper, tin and other non-ferrous impurities. Problemy Chyorn. Metallurgii i Materialovedeniya, 3, 5–12 [in Russian].
  12. Jung S.-H., Kang Y.-B. (2016) Evaporation mechanism of Cu from liquid Fe containing C and S. Metallurgical and Materials Transactions B, 47(4), 2164–2176.
  13. Katsutoshi, O., Ichise, E., Suzuki, R., Hidani, T. (1995) Elimination of copper from the molten steel by NH3 blowing under reduced pressure. Steel Research, 9, 372–376.
  14. Matsuo, T. (1988) Removal of copper and tin with plasm. of Iron and Steel Inst. of Japan, 28(4), 319–324. https://doi.org/10.2355/isijinternational1966.28.319
  15. Liu, X., Jeffers, J. (1989) Decopperisation of molten steel by various slags. Ironmaking and Steelmaking, 16(5), 331–334.
  16. Wang, C., Nagasaka, T., Hino, M., Ban-Ya, S. (1991) Copper distribution between FeS-alkaline or-alkaline earth metal sulfide fluxes and carbon saturated iron melt. ISIJ Int., 31(11), 1309–1315. https://doi.org/10.2355/isijinternational.31.1309
  17. Shimpo, R., Ogawa, O., Fukaya, Y., Ishikawa, T. (1997) Copper removal from carbon-saturated molten iron with Al2S3–FeS flux. and Mater. Transact. B, 28(6), 1029–1037. https://doi.org/10.1007/s11663-997-0057-8
  18. Cohen, A., Blander, M. (1998) Removal of copper from carbon-saturated iron with an aluminum sulfide/ferrous sulfide flux. Ibid., 29(2), 493–495. https://doi.org/10.1007/s11663-998-0129-4
  19. Yamaguchi, K., Ono, H., Usui, T. (2010) Oxidation removal of cu from carbon saturated iron via Ag phase. Tetsu-to-Hagane, 96(9), 531–535. https://doi.org/10.2355/tetsutohagane.96.531
  20. Yamaguchi, K., Takeda, Y. (2003) Impurity removal from carbon saturated liquid iron using lead solvent. Transact., 44(12), 2452–2455. https://doi.org/10.2320/matertrans.44.2452
  21. Jordan J. F. (1950) Method of desulfurizing and decopperizing ferrous metal. Pat. US2512578 A USA.
  22. Schenck, H., Roth, H., Steinmetz, E. (1970) Der Stoffumsatz des Kupfers zwischen flussigen Eisen im Bereich der Kohlenstoffsattigung und Natriumsulfidschlacken. Archiv fur das Eisenhuttenwesen, 41(7), 595–603. https://doi.org/10.1002/srin.197003605
  23. Kudrin, V.A. (1992) Modern and prospective methods of removal of non-ferrous metal impurities from iron-carbon melts. Staleplavilnoe Proizvodstvo, 1. Moscow, Chermetinformatsiya [in Russian].
  24. Imai, T., Sano, N. (1988) The copper partition between Na2S bearing fluxes and carbon-saturated iron melts. of the Iron and Steel Inst. of Japan, 28(12), 999–1005. https://doi.org/10.2355/isijinternational1966.28.999
  25. Wang, C., Nagasaka, T., Hino, M., Ban-Ya, S. (1991) Copper distribution between molten FeS–NaS0,5 flux and carbon saturated iron melt. ISIJ Int., 31(11), 1300–1308. https://doi.org/10.2355/isijinternational.31.1300
  26. Hui, K., JianJun, W., Shang-xing, G. et al. (2009) Copper removal from molten steel with FeS–Na2S slag. High Temperature Materials and Processes, 28(1–2), 67–72. https://doi.org/10.1515/HTMP.2009.28.1-2.67
  27. Shang-xing, G., Jian-jun, W., Li, Z. et al. (2008) Decopperization of liquid steel by fes-na2s flux. Journal of Iron and Steel Research, 20(10), 9–12.
  28. Kashin, V.I., Katsnelson, A.M., Sojfer, L.M., Krylov, A.S. (1986) Physical- chemical principles of interaction of copper and sulfur in iron melt at sulfide slag treatment. Stal, 3, 29–32 [in Russian].
  29. Safian, A. A., Sale, F. R. (1972) Influence of carbon on the removal of copper from iron melts with sulphide slags. of the Iron and Steel Inst., 1, 52–56.
  30. Uchida, Y., Matsui, A., Kishimoto, Y., Miki, Y. (2015) Fundamental investigation on removal of copper from molten iron with Na2CO3–FeS fluxes. ISIJ Int., 55(8), 1549–1557. https://doi.org/10.2355/isijinternational.ISIJINT-2014-776
  31. Katsnelson, A.M., Kashin, V.I., Sojfer, L.M. et al. (1988) Study of process of copper removal from iron melt by nonsulphurous sodium compounds. Stal, 3, 30–31 [in Russian].
  32. Kashin, V.I., Katsnelson, A.M., Danilovich, Yu.A. et al. (1991) Experimental-industrial testing of process of refining of iron-carbon melts from copper. Ibid., 7, 15–16 [in Russian].
  33. Kostetsky, Y. (2015) Prospects and ways of creating steelmaking process that provides removing copper from liquid metal. In: of 2-nd Int. Conf. on Advances in Metallurgical Processes & Materials AdMet 2014 (4–5 June, 2015, Kyiv).