Print

2021 №02 (03) DOI of Article
10.37434/sem2021.02.04
2021 №02 (05)


Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2021, #2, 26-31 pages

Chemical equilibrium IN Fe–O–H system at high temperatures

M.M. Gasik1, M.I. Gasik2


1Aalto University. 00076, Aalto, Espoo, Finland. E-mail: michael.gasik@aalto.fi
2National Metallurgical Academy of Ukraine. 4 Gagarin Prosp., 49000, Dnipro, Ukraine

Abstract
The issue of thermodynamic equilibrium in Fe–O–H system at the temperatures of steel-melting processes (1600 °С) was considered. The historical data array, features of experiments on obtaining them and their drawbacks were analyzed. A new more correct calculation of hydrogen and oxygen concentration in liquid iron and in the gas phase was performed. New coeffi cients of activity were calculated, proceeding from precise thermodynamic principles, unlike the earlier used artifi cial models based on interaction parameters. Ref. 19, Fig. 6.
Keywords: thermodynamics; iron; hydrogen; oxygen; solutions; activity; equilibrium

Received 26.04.2021

References

1. Filippov, S.I. (1967) Theory of metallurgical processes. Moscow, Metallurgiya [in Russian].
2. Velichko, A.G. (2005) Out-of-furnace steel treatment. Dnepropetrovsk, Sistemnye Tekhnologii [in Russian].
3. Okhotsky, V.B., Kostyolov, O.L., Simonov, V.K. (1997) Theory of metallurgical processes. Kyiv, IZMN [in Ukrainian].
4. Knyuppel, G. (1973) Deoxidation and vacuum treatment of steel. Moscow, Metallurgiya [in Russian].
5. Vacher, H.C. (1933) The system liquid iron-carbon oxides. US Bureau of Standards J. Res., 11, 541-551. https://doi.org/10.6028/jres.011.036
6. Vacher, H.C., Hamilton, E.H. (1931) Carbon-oxygen equilibrium in liquid iron. Transact. AIME, 95, 124-140.
7. Kozlovsky, A.I., Medovar, B.I., Projdak, Yu.S. et al. (1999) Application of methods of special electrometallurgy and outof- furnace treatment in production of wheel steel. Problemy Spets. Elektrometallurgii, 2, 31-38 [in Russian].
8. Sakao, H., Sano, K. (1960) Equilibrium between dissolved oxygen in liquid iron and H2-H2O gas mixtures. Transact. JIM, 1, 38-42. https://doi.org/10.2320/matertrans1960.1.38
9. Schenck, H., Wünsch, H. (1961) Über die Gleichgewichtslöslichkeit des Wasserstoffs im fl üssigen reinen Nickel und Eisen und die Beeinfl ussung im Eisen durch Sauerstoff. Arch. Eisenhüttenw., 32(11), 779-790. https://doi.org/10.1002/srin.196103272
10. Gasik, M.I., Khitrik, S.I. (1965) Interaction of liquid iron with vapor-hydrogen mixture. Metallurgiya i Koksokhimiya, 3, 5-16 [in Russian].
11. Ban-ya, S., Fuwa, T., Ono, K. (1967) Solubility of hydrogen in liquid iron alloys. Tetsu-to-Hagane, 53, 13-28. https://doi.org/10.2355/tetsutohagane1955.53.2_101
12. Kubaschewski, O., Alcock, C.B. (1979) Metallurgical thermochemistry. 5th Ed. Pergamon Press, Oxford.
13. Sanbongi, K. (1981) Thermodynamics of ironmaking and steelmaking processes. Transact. JIM, 22, 663-676. https://doi.org/10.2320/matertrans1960.22.663
14. Lupis, C.H.P. (1983) Chemical thermodynamics of materials. North-Holland, NY.
15. Gasik, M.M., Gasik, M.I. (1985) Thermodynamic investigation of hydrogen-oxygen equilibrium in liquid iron. Izv. AN SSSR. Metally, 3, 22-30 [in Russian].
16. Gasik, M. (2013) Handbook of Ferroalloys: Theory and Technology, Elsevier. Butterworth-Heinemann, Oxford, UK.
17. Gasik, M.M., Gasik, M.I. (2020) Chemical potentials and activities in metallurgical processes. Suchasna Elektrometalurhiya, 4, 39-43 [in Ukrainian]. https://doi.org/10.37434/sem2020.04.07
18. Hillert, M. (1998) Phase equilibria, phase diagrams and phase transformations: Their thermodynamic basis. Cambridge Univ. Press, Cambridge, UK.
19. Schuhman, R.Jr. (1955) Application of Gibbs-Duhem equations to ternary systems. Acta Metall., 3, 219-226. https://doi.org/10.1016/0001-6160(55)90055-9

Advertising in this issue: