Print

2017 №01 (05) DOI of Article
10.15407/tdnk2017.01.06
2017 №01 (07)


Technical Diagnostics and Non-Destructive Testing, №1, 2017 pp. 37-42

Principles for development of hardware-software complex for nondestructive testing of aircraft composite structural components

Muravsky L. I., Voronyak T. I., Ivanytsky Ya. L., Dzhala V. R., Kuts O. G.


Karpenko Physico-Mechanical Institute NAS of Ukraine. 79060, Lviv-60, Naukova str., 5.
E-mail: murav@ipm.lviv.ua  
The basic principles for development of a portable hardware-software complex for nondestructive testing of aircraft composite structural components are considered. This complex will combine means of electronic speckle interferometry, digital image correlation and microwave frequency nondestructive testing, which optimization and synchronization will be implemented with the help of the appropriate software. The complex is created to develop new techniques for monitoring and diagnostics of composite structural elements and composite or metal-composite joints in aircraft equipment. The developed techniques will allow increasing the reliability and lifetime of structural elements due to internal defects detection, analysis of three-dimensional displacement fields of contact surfaces and evaluation of damage and bearing stress in joints elements. 21 References, 6 Figures.

References

1. Muravskyi L. I., Voroniak T. I., Kmet A. B. Lazerna interferometriia poverkhni dlia potreb tekhnichnoi diahnostyky: nauk. red. NANU Z. T. Nazarchuk.– Lviv: SPOLOM, 2014.– 272 s. [in Ukarainian].
2. Muravsky L., Kmet' A., Voronyak T. (2013) Two approaches to the blind phase shift extraction for two-step electronic speckle pattern interferometry. Opt. Eng, V. 52, 10, 101909(1-8).
3. Nazarchuk Z. T., Dzhala V. R., Syniavskyi A. T. (2013) Vyiavlennia pidpoverkhnevykh neodnoridnostei u dielektrychnykh materialakh radiokhvylovym nadvysokochastotnym metodom. Fiz.-khim. mekhanika materialiv., 4, 7-22.
4. Maksymenko O. P., Ivanytskyi Ya. L., hvozdiuk M. M. (2014) Vyznachennia zhorstkosti z'iednannia kompozyt–metal metodom tsyfrovoi koreliatsii zobrazhen. Ibid, 6, 44-49.
5. L. I. Muravskyi ta in. (2012) Optyko-tsyfrovyi kompleks dlia mikrodiahnostyky stanu poverkhni, deformatsii ta prykhovanykh defektiv u kompozytnykh elementakh aviakonstruktsii. Tsilova kompl. prohr. NANU «Problemy resursu i bezpeky ekspluatatsii konstruktsii, sporud ta mashyn»: zb. nauk. statei, , 71-75.
6. Pouet B. F., Krishnaswamy S. (1993) Additive/subtractive decorrelated electronic speckle pattern interferometry. Opt. Eng, V. 32, 6, 1360-1369. https//doi.org/10.1117/12.135841
7. Pouet B. F., Chatters T., Krishnaswamy S. (1993) Synchronized reference updating technique for electronic speckle interferometry. J. Nondestr. Eval, V. 12, 2, 133-138. https//doi.org/10.1007/BF00567569
8. Fomitchov P., Wang L.-S., Krishnaswamy S. (1997) Advanced image-processing techniques for automatic nondestructive evaluation of adhesively-bonded structures using speckle interferometry. J. Nondestr. Eval, V.16, 4, 215-227. https//doi.org/10.1023/A:1021848031529
9. Gerhard h., Busse G. (2005) Two new techniques to improve interferometric deformation-measurement: lockin and ultrasound excited speckle-interferometry. Proc. Fringe 2005; ed. W. Osten. – Berlin: Springer-Verlag,, , 530-538.
10. Gerhard h., Busse G. (2006) Lockin-ESPI interferometric imaging for remote non-destructive testing. NDT & E International, V. 39, 8, 627-635.
11. Menner P., Gerhard h., Busse G. (2011) Lockin-interferometry: principle and applications in NDE. J. Mechanical Eng, V. 57, 3, 183-191. https//doi.org/10.5545/sv-jme.2010.169
12. F. Iancu et al. (2005) Three-dimensional investigation of thick single-lap bolted joints. Exp. Mechanics, V. 45, 4, 351-358. https//doi.org/10.1007/BF02428165
13. Kradinov V., Madenci E., Ambur D. R. (2007) Combined in-plane and through-the-thickness analysis for failure prediction of bolted composite joints. Compos. Struct, V. 77, 2, 127-147. https//doi.org/10.1016/j.compstruct.2005.06.008
14. Jam J. E., Ghaziani N. O. (2011) Numerical and experimental investigation of bolted joints. Int. J. Eng. Sci. Technol, V. 3, 8, 285-296.
15. McGinnis M. J., Pessiki S., Turker h. (2005) Application of threedimensional digital image correlation to the core-drilling method. Exp. Mechanics, V. 45, 4, 359-367. https//doi.org/10.1007/BF02428166
16. Schajer G. S. (2010) hole-drilling residual stress measurements at 75: origins, advances, opportunities. Ibid, V. 50, 2, 245-253. https//doi.org/10.1007/s11340-009-9285-y
17. Ascione F., Luciano F., Franco M. (2010) On the pin-bearing failure load of GFRP bolted laminates: An experimental analysis on the influence of bolt diameter. Compos. Part B-Eng, V. 41, 6, 482-490. https//doi.org/10.1016/j.compositesb.2010.04.001
18. A. B. Abibe et al. (2013) Mechanical and failure behaviour of hybrid polymer–metal staked joints. Mater. Design, V. 46, 338-347. https//doi.org/10.1016/j.matdes.2012.10.043
19. L. Adam et al. (2012) Discrete ply model of circular pull-through test of fasteners in laminates. Compos. Struct, V. 94, 10, 3082-3091. https//doi.org/10.1016/j.compstruct.2012.05.008
20. Gamdani F., Boukhili R., Vadean A. (2015) Tensile strength of open-hole, pin-loaded and multi-bolted single-lap joints in woven composite plates. Mater. Design, V. 88, 702-712. https//doi.org/10.1016/j.matdes.2015.09.008
21. Muravskyi L. I. Metody spekl-koreliatsii dlia doslidzhennia mekhanichnykh vlastyvostei konstruktsiinykh materialiv. – Kyiv: Naukova dumka, 2010. – 208 s. [in Ukrainian].