2019 №11 (04) DOI of Article
2019 №11 (06)

TPWJ, 2019, #11, 23-32 pages
Journal                    The Paton Welding Journal
Publisher                 International Association «Welding»
ISSN                      0957-798X (print)
Issue                       #11, 2019 (November)
Pages                      23-32

Processes of nonconsumable electrode welding with welding current modulation (Review). Part 1. Peculiarities of burning of nonstationary arcs with refractory cathode

Boyi Wu1 and I.V. Krivtsun2
1Guangdong Welding Institute (China-Ukraine E.O. Paton Institute of Welding) 363 Changxing Str., Tianhe, 510650, Guangzhou. E-mail:
2E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail:

Works devoted to the processes of inert-gas nonconsumable electrode welding with current modulation were reviewed. In the first part of the review attention is focused on studies, dealing with the features of running of thermal, gas-dynamic and electromagnetic processes in nonstationary arcs with refractory cathode at different modes of arc current modulation. 35 Ref., 2 Tables, 18 Figures.
Keywords: arc with refractory cathode, arc plasma, TIG welding, welding current modulation, pulse, frequency, fill factor, amplitude
Received:                28.10.19
Published:               21.12.19


1. Lienert, T.J., Babu, S.S., Siewert, T.A., Acoff, V.A. (2011) ASM Handbook. Vol. 6A. Welding fundamentals and processes. Ohio, USA, ASM International.
2. Roden, W.A. (1972) High-frequency, pulsed-current GTA welding. In: Proc. of National Aerospace Engineering and Manufacturing Meeting (2-5 Oct. 1972, San Diego, California, USA). Paper 720874, 1-8.
3. Leitner, R.E., McElhinney, G.H., Pruitt, E.L. (1973) An investigation of pulsed GTA welding variables. Welding J., Res. Suppl., 9, 405-410.
4. Yamaoto, T., Shimada, W., Gotoh, T. (1976) Characteristics of high frequency pulsed DC TIG welding process. Doc. IIW 212-628-76, 16-22.
5. Sokolov, O.I., Gladkov, E.A. (1977) Dynamic characteristics of free-burning and constricted welding arc of direct current with nonconsumable electrode. Svarochn. Proizvodstvo, 4, 3-5 [in Russian].
6. Omar, A.A., Lundin, C.D. (1979) Pulsed plasma - pulsed GTA arcs: A study of the process variables. Welding J., Res. Suppl., 4, 97-105.
7. Cook, G.E., Eassa, H.E.-D.E.H. (1985) The effect of high-frequency pulsing of a welding arc. IEEE Transact. on Industrial Application, 1A-21, 5, 1294-1299.
8. Kolasa, A., Matsunawa, A., Arata, Y. (1986) Dynamic characteristics of variable frequency pulsed TIG arc. Transact. of JWRI, 15(2), 173-177.
9. Saedi, H.R., Unkel, W. (1988) Arc and weld pool behavior for pulsed current GTAW. Welding J., Res. Suppl., 11, 247-255.
10. Zhao, J., Sun, D., Hu, S. (1992) Arc behavior of high frequency pulse TIG welding arc. Transact. China Weld Inst., 13(1), 59-66.
11. Kim, W.H., Na, S.J. (1998) Heat and fluid flow in pulsed current GTA weld pool. Int. J. of Heat and Mass Transfer, 41(21), 3213-3227.
12. Wu, C.S., Zheng, W., Wu, L. (1999) Modelling the transient behaviour of pulsed current tungsten-inert-gas weld pools. Modelling and Simul. Mater. Sci. Eng., 7(1), 15-23.
13. Dzelnitzki, D. (2000) Muendersbach TIG - direct-current welding with high-frequency pulses, an interesting process variant. EWM Hightec Welding GmbH. 200. WM008801. DOC; 08.00.
14. Onuki, J., Anazawa, Y., Nihei, M. et al. (2002) Development of a new high-frequency, high-peak current power source for high constricted arc formation. Japan. J. Appl. Phys., 41, 5821-5826.
15. Song, Y., Yan, S., Xiao, T. et al. (2010) A Study on the macro-micro physical properties in pulsed arc plasma. Transact. of JWRI, 39(2), 17-18.
16. Wu, C.S. (2008) Welding heat process and pool geometry. Beijing, China Machine Press, 102-104.
17. Cong, B., Qi, B., Zhou, X. (2009) TIG arc behavior of ultrafast-convert high-frequency variable polarity square wave. Transact. China Welding Institution, 30(6), 87-90.
18. Traidia, A., Roger, F., Guyot, E. (2010) Optimal parameters for pulsed gas tungsten arc welding in partially and fully penetrated weld pools. Int. J. of Thermal Sci., 49, 1197-1208.
19. Traidia, A., Roger, F. (2011) Numerical and experimental study of arc and weld pool behaviour for pulsed current GTA welding. Int. J. of Heat and Mass Transfer., 54, 2163-2179.
20. Karunakaran, N., Balasubramanian,V. (2011) Effect of pulsed current on temperature distribution weld bead profiles and characteristics of gas tungsten arc welded aluminum alloy joints. Transact. Nonferrous Met. Soc. China, 21, 278-286.
21. Yang, M., Qi, B., Cong, B. et al. (2012) The influence of pulse current parameters on arc behavior by austenite stainless steel. Transact. China Welding Institution, 33(10), 67-71.
22. Qi, B., Yang, M., Cong, B. et al. (2012) Study on fast-convert ultrasonic frequency pulse TIG welding arc characteristic. Mater. Sci. Forum., 704-705, 745-751.
23. Qi, B., Yang, M., Cong, B. et al. (2013) The effect of arc behavior on weld geometry by high-frequency pulse GTAW process with 0Cr18Ni9Ti stainless steel. Int. J. Adv. Manuf. Technol., 66, 1545-1553.
24. Yang, M., Qi, B., Cong, B. et al. (2013) Study on electromagnetic force in arc plasma with UHFP-GTAW of Ti-6Al-4V. IEEE Transact. on Plasma Sci., 41(9), 2561-2568.
25. Yang, Z., Qi, B., Cong, B. et al. (2013) Effect of pulse frequency on weld appearance behavior by TC4 titanium alloys. Transact. China Welding Institute, 34(12), 37-40.
26. Krivtsun, I.V., Krikent, E.V., Demchenko, V.F. (2013) Modelling of dynamic characteristics of a pulsed arc with refractory cathode. The Paton Welding J., 7, 13-23.
27. Yang, M., Yang, Z., Cong, B. et al. (2014) A study on the surface depression of the molten pool with pulsed welding. Welding J., Res. Suppl., 93(8), 312-319.
28. Yang, M., Yang, Z., Qi, B. (2015) The effect of pulsed frequency on the plasma jet force with ultra high frequency pulsed arc welding. IIW, 8, 875-882.
29. Sydorets, V.N., Krivtsun, I.V., Demchenko, V.F. et al. (2016) Calculation and experimental research of static and dynamic volt-ampere characteristics of argon arc with refractory cathode. The Paton Welding J., 2, 2-8.
30. Cunha ,T.V.d., Louise-Voigt ,A., Bohorquez, C.E.N. (2016) Analysis of mean and RMS current welding in the pulsed TIG welding process. J. Materials Proc. Technology, 231, 449-455.
31. Silva, D.C.C., Scotti, A. (2016) Using either Mean or RMS values to represent current in modeling of arc welding bead geometries. Ibid., 240, 382-387.
32. Demchenko, V.F., Boi, U., Krivtsun, I.V., Shuba, I.V. (2017) Effective values of electrodynamic characteristics of the process of nonconsumable electrode welding with pulse modulation of arc current. The Paton Welding J., 8, 2-11.
33. Nestor, O.H. (1962) Heat intensity and current density distributions at the anode of high current, inert gas arcs. J. Appl. Phys., 33(5), 1638-1648.
34. Demchenko, V.F., Boi, U., Krivtsun, I.V. et al. (2016) Procedure of density distribution restoration of electric current in arc anode spot with refractory cathode according to experimental data obtained by the method of split anode. In: Proc. of 8th Int. Conf. on Mathematical Modeling and Information Technologies in Welding and Related Processes (19-23 September 2016, Odessa Ukraine), 21-28.
35. Grim, G. (1978) Spectral line broadening in plasma. Moscow, Mir [in Russian].