Print

2019 №06 (09) DOI of Article
10.15407/tpwj2019.06.10
2019 №06 (11)


The Paton Welding Journal, 2019, #6, 50-53 pages

Journal The Paton Welding Journal
Publisher International Association «Welding»
ISSN 0957-798X (print)
Issue #6, 2019 (June)
Pages 50-53

Peculiarities of welding process using metal cored wire of TMV5-mk grade

A.A. Golyakevich1, L.N. Orlov1 and S.Yu. Maksimov2


1LLC TM.VELTEK 15 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-maul: office@veldec.ua
2E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazimir Malevich Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Currently, in the world market of welding consumables a steady tendency in growing the consumption of flax-cored wires is preserved. One of the rapidly developing technologies for manufacture of metal structures is arc welding in shielding gases using the metal cored wire. as to the technology of application the metal cored wires, do not differ from solid wires, and as to the number of technological characteristics they even surpass them. LLC TM.Veltek has developed and mastered the production of high-efficient metal cored wire TMV5-MK for welding in a mixture of 82 % Ar + 18 % CO2. It was found that the metal cored wire provides a high stability of arc burning in a wide range of welding conditions. Using the solid wire Sv-08G2S in welding at the same modes in the optimum range, the value of stability of arc burning is 3 times lower as compared with the metal cored wire TMV5-MK. It is shown that the stability of welding process is significantly influenced by electrodynamic properties of the power source and this factor should be taken into account during evaluation of welding and technological properties of welding wires and working out of recommendations for their application. 8 Ref., 1 Table, 4 Figures.
Keywords: metal cored wire, solid wire, power source, stability of arc burning, short circuits


Received: 17.04.19
Published: 20.06.19


References

1. Mazur, A.A., Makovetskaya, O.K., Pustovojt, S.V., Brovchenko, N.S. (2015) Metal cored wires at the world and regional markets of welding consumables (Review). The Paton Welding J., 5-6, 63-69. https://doi.org/10.15407/tpwj2015.06.15
2. Shlepakov, V.N., Gavrilyuk, U.A., Kotelchuk, A.S. (2010) State-of-the-art of development and application of flux-cored wires for welding of carbon and low-alloyed steels. Ibid., 3, 38-42.
3. Rosert, R., Karasyov, M.V. (2012) Metal cored wires: tendencies, development and their application in industry. In: Proc. of St.-Petersburg Int. Conf. on Welding Consumables -2012 to 100th Anniversary of TsNIIM (Russian, St.-Petersburg, 16-18 October, 2012), 220-230.
4. Karasyov, M.V., Rabotinsky, D.N., Alimov, A.N. et al. (2008) Welding of butt joints of bridge structures and pipelines using metal cored wire and equipment for metal transfer control. The Paton Welding J., 10, 42-45.
5. Metal cored wire OUTERSHIELD®. https:www.lincolnelectric.com/ruru/support/process-and-theory/Pages/metal cored-wires.aspx.
6. Advantages and disadvantages of metal cored wires. http://www.esabna.com./us/en/education/blog/advantages-anddisadvantages-of-metal cored-wires.cfm
7. Gas-arc welding of metal structures by metal cored wire withmetal core. http://www.spetselectrode.ru/download/2017-Gazoelectricheskaya-svarka-metallokonstrukciyporoshkovoy-provolokoy-s-metallicheskim-serdechnikom/1.htm
8. Pirumov, A.E., Skachkov, I.O., Suprun, S.A., Maksimov, Yu.S. (2007) Specialized information-measuring system for monitoring the process of arc welding. The Paton Welding J., 8, 34-36.