Триває друк

2022 №11 (02) DOI of Article
10.37434/as2022.11.03
2022 №11 (04)


Журнал «Автоматичне зварювання», № 11, 2022, с. 18-27

Проблеми та перспективи дослідження процесів селективного лазерного плавлення матеріалів для аерокосмічної техніки (Огляд)

М.В. Соколовський


ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua

У даній роботі з метою визначення актуальних напрямків дослідження різних наукових складових процесу селективного лазерного плавлення (SLM), а також технологічних заходів, які впливають на кінцеву структуру, механічні та експлуатаційні характеристики виготовленої деталі, було проведено літературний огляд матеріалів, присвячених різним напрямкам дослідження технології SLM. Напрямками наукових робіт, розглянутих у даному огляді, були: дослідження та поглиблення знань щодо впливу енергетичної складової процесу SLM; можливості модифікації процесу SLM шляхом контролю величини розфокусування лазера; вивчення режимів та методів SLM-обробки, а також кінцевої мікроструктури зразків; вивчення корозійної стійкості виробів, виготовлених за допомогою SLM. На підставі результатів літературного аналізу показано проблеми та перспективи вивчення процесів SLM для матеріалів аерокосмічної індустрії, аргументовано необхідність створення систематизованого комплексного підходу до вивчення складових процесу SLM, а також поглиблення знань щодо технологічних можливостей його використання. Бібліогр. 46, рис. 6.
Ключові слова: селективне лазерне плавлення (SLM), адитивне виробництво, порошкова металургія, контроль розміру фокусної плями, стратегія сканування, метали аерокосмічної індустрії.


Надійшла до редакції 30.06.2022

Список літератури

1. Sun, Z., Tan, X., Tor, S., Chua, C. (2018) Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Materials, 10(4), 127–136.
2. Wang, Y., Voisin, T., McKeown, J. et al. (2017) Additively manufactured hierarchical stainless steels with high strength and ductility. Nature Materials, 17(1), 63–71.
3. Yang, W., Tarng, Y. (1998) Design optimization of cutting parameters for turning operations based on the Taguchi method. Journal of Materials Processing Technology, 84(1-3), 122–129.
4. Mukherjee, T., Manvatkar, V., De, A., DebRoy, T. (2017) Dimensionless numbers in additive manufacturing. Journal of Applied Physics, 121(6), id.064904.
5. Ion, J., Shercliff, H., Ashby, M. (1992) Diagrams for laser materials processing. Acta Metallurgica et Materialia, 40(7), 1539–1551.
6. Thomas, M., Baxter, G., Todd, I. (2016) Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Materialia, 108, 26–35.
7. Jiang, H., Li, Z., Feng, T. et al. (2019) Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method. Optics & Laser Technology, 119, id.105592.
8. Darvish, K., Chen, Z., Pasang, T. (2016) Reducing lack of fusion during selective laser melting of CoCrMo alloy: Effect of laser power on geometrical features of tracks. Materials & Design, 112, 357–366.
9. Li, Z., Voisin, T., McKeown, J. et al. (2019) Tensile properties, strain rate sensitivity, and activation volume of additively manufactured 316L stainless steels. International Journal of Plasticity, 120, 395–410.
10. Hou, H., Simsek, E., Ma, T. et al. (2019) Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing. Science, 366(6469), 1116–1121.
11. Ma, M., Wang, Z., Zeng, X. (2017) A comparison on metallurgical behaviors of 316L stainless steel by selective laser melting and laser cladding deposition. Materials Science and Engineering: A, 685, 265–273.
12. Jiang, H., Li, Z., Feng, T. et al. (2020) Effect of Process Parameters on Defects, Melt Pool Shape, Microstructure, and Tensile Behavior of 316L Stainless Steel Produced by Selective Laser Melting. Acta Metallurgica Sinica (English Letters), 34(4), 495–510.
13. Kurzynowski, T., Gruber, K., Stopyra, W. et al. (2018) Correlation between process parameters, microstructure and properties of 316 L stainless steel processed by selective laser melting. Materials Science and Engineering: A, 718, 64–73.
14. Martin, A., Calta, N., Khairallah, S. et al. (2019) Dynamics of pore formation during laser powder bed fusion additive manufacturing. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10009-2
15. Tang, C., Tan, J., Wong, C. (2018) A numerical investigation on the physical mechanisms of single-track defects in selective laser melting. International Journal of Heat and Mass Transfer, 126, 957–968.
16. Zheng, M., Wei, L., Chen, J. et al. (2021) On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy. Journal of Materials Research and Technology, 11, 392–403.
17. Zheng, M., Wei, L., Chen, J. et al. (2019) A novel method for the molten pool and porosity formation modelling in selective laser melting. International Journal of Heat and Mass Transfer, 140, 1091–1105.
18. Zheng, M., Wei, L., Chen, J. et al. (2019) Surface morphology evolution during pulsed selective laser melting: Numerical and experimental investigations. Applied Surface Science, 496, id.143649.
19. Deng, C., Kang, J., Feng, T. et al. (2018) Study on the Selective Laser Melting of CuSn10 Powder. Materials, 11(4), 614.
20. Kempen, K. (2015) Expanding the materials palette for Selective Laser Melting of metals (Ph.D.). KU Leuven University, Belgium.
21. Wang, L., Wei, Q., Shi, Y. et al. (2011) Experimental Investigation into the Single-Track of Selective Laser Melting of IN625. Advanced Materials Research, 233-235, 2844–2848.
22. Yadroitsev, I., Yadroitsava, I., Bertrand, P., Smurov, I. (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyping Journal, 18(3), 201–208.
23. Promoppatum, P., Yao, S., Pistorius, P., Rollett, A. (2017) A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion. Engineering, 3(5), 685–694.
24. Brandt, M. (2016) Laser Additive Manufacturing: Materials, Design, Technologies, and Applications. Duxford: Woodhead Publishing, 259–279.
25. Metelkova, J., Kinds, Y., Kempen, K. et al. (2018) On the influence of laser defocusing in Selective Laser Melting of 316L. Additive Manufacturing, 23, 161–169.
26. Paraschiv, A., Matache, G., Condruz, M. et al. (2021) The Influence of Laser Defocusing in Selective Laser Melted IN 625. Materials, 14(13), 34–47.
27. Zhou, C., Hu, S., Shi, Q. et al. (2020) Improvement of corrosion resistance of SS316L manufactured by selective laser melting through subcritical annealing. Corrosion Science, 164, id.108353.
28. McLouth, T., Bean, G., Witkin, D. et al. (2018) The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting. Materials & Design, 149, 205–213.
29. Laleh, M., Hughes, A., Xu, W. et al. (2020) Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing. Corrosion Science, 165, id.108412.
30. Duan, Z., Man, C., Dong, C. et al. (2020) Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores. Corrosion Science, 167, id.108520.
31. Kong, D., Ni, X., Dong, C. et al. (2018) Heat treatment effect on the microstructure and corrosion behavior of 316L stainless steel fabricated by selective laser melting for proton exchange membrane fuel cells. Electrochimica Acta, 276, 293–303.
32. Trelewicz, J., Halada, G., Donaldson, O., Manogharan, G. (2016) Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel. JOM, 68(3), 850–859.
33. AlMangour, B., Grzesiak, D., Yang, J. (2017) Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. Journal of Alloys and Compounds, 728, 424–435.
34. Zhao, C., Bai, Y., Zhang, Y. et al. (2021) Influence of scanning strategy and building direction on microstructure and corrosion behaviour of selective laser melted 316L stainless steel. Materials & Design, 209, id.109999.
35. Wang, X., Kang, J., Wang, T. et al. (2019) Effect of Layer-Wise Varying Parameters on the Microstructure and Soundness of Selective Laser Melted INCONEL 718 Alloy. Materials, 12(13), id.2165.
36. Strößner, J., Terock, M., Glatzel, U. (2015) Mechanical and Microstructural Investigation of Nickel-Based Superalloy IN718 Manufactured by Selective Laser Melting (SLM). Advanced Engineering Materials, 17(8), 1099–1105.
37. Yi, J., Kang, J., Wang, T. et al. (2021) Microstructure and mechanical behavior of bright crescent areas in Inconel 718 sample fabricated by selective laser melting. Materials & Design, 197, id.109259.
38. Wan, H., Zhou, Z., Li, C. et al. (2018) Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting. Journal of Materials Science & Technology, 34(10), 1799–1804.
39. Popovich, V., Borisov, E., Popovich, A. et al. (2017) Functionally graded Inconel 718 processed by additive manufacturing: Crystallographic texture, anisotropy of microstructure and mechanical properties. Materials & Design, 114, 441–449.
40. Amato, K., Gaytan, S., Murr, L. et al. (2012) Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting. Acta Materialia, 60(5), 2229–2239.
41. Liu, X., Wang, K., Hu, P. (2021) Formability, Microstructure and Properties of Inconel 718 Superalloy Fabricated by Selective Laser Melting Additive Manufacture Technology. Materials, 14(4), 991.
42. Ji, H., Gupta, M., Song, Q. et al. (2021) Microstructure and machinability evaluation in micro milling of selective laser melted Inconel 718 alloy. Journal of Materials Research and Technology, 14, 348–362.
43. Sander, G., Thomas, S., Cruz, V. et al. (2017) On The Corrosion and Metastable Pitting Characteristics of 316L Stainless Steel Produced by Selective Laser Melting. Journal of The Electrochemical Society, 164(6), 250–257.
44. Chao, Q., Cruz, V., Thomas, S. et al. (2017) On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel. Scripta Materialia, 141, 94–98.
45. Zhang, Y., Liu, F., Chen, J., Yuan, Y. (2017) Effects of surface quality on corrosion resistance of 316L stainless steel parts manufactured via SLM. Journal of Laser Applications, 29(2), 022306.
46. Vignal, V., Voltz, C., Thiébaut, S. et al. (2021) Pitting Corrosion of Type 316L Stainless Steel Elaborated by the Selective Laser Melting Method: Influence of Microstructure. Journal of Materials Engineering and Performance, 30(7), 5050–5058.

Реклама в цьому номері: