Eng
Ukr
Rus
Print

2018 №01 (08) DOI of Article
10.15407/tdnk2018.01.01
2018 №01 (02)

Technical Diagnostics and Non-Destructive Testing 2018 #01
Technical Diagnostics and Non-Destructive Testing #1, 2018, pp. 3-7
 
 

Evaluation of damage level in ferritic-pearlitic steels by the  value of the change of longitudinal acoustic wave velocity

V.R. Skalskyi, O. M. Mokryy

G.V. Karpenko Physico-Mechanical Institute of the NAS of Ukraine, 5 Naukova str., 79060, Lviv, Ukraine E-mail: skalsky.v@gmail.com, mokomo@lviv.farlep.net
 
 
Quantitative characteristic of the change of velocity of a longitudinal acoustic wave and density in ferritic-pearlitic steel as a result of plastic deformation was obtained. Possibility of evaluation of the level of damage that is due to plastic deformation by the change of acoustic wave velocity is demonstrated. Experimental data were the base for correlating the change of velocity and damage level in the form of a third-degree polynomial. 14 References, 3 Figures.
 
Keywords: plastic deformation, damage level, acoustic wave velocity, density

Received: 22.01.2018
 
Published: 20.03.2018

References
  1. Nazarchuk, Z.T., Skalskyi, V.R. (2009) Acoustic-emission diagnostics of structure elements: Manual, in 3 Vol. Vol. 2: Methodology of acoustic-emission diagnostics. Kyiv, Naukova Dumka [in Ukrainian].
  2. Erofeev, V.I., Nikitina, E.A. (2010) Matched dynamic problem of material damage evaluation by acoustic method. Fiz. Osnovy Tekh. Diagnostiki, 56(4), 554-557 [in Russian].
  3. Mishakin, V.V., Kassina, N.V., Gonchar, A.V. et al. (2008) Acoustic method of damage evaluation of materials and structures under force loading. Vestnik Nauchno-Tekhnicheskogo Razvitiya, 5, 61-66 [in Russian].
  4. Gonchar, A.V., Mishakin, V.V. (2012) Evaluation of plastic deformation value in structurally-inhomogeneous materials using ultrasonic and metallographic examinations. Metallurgiya i Materialovedenie, 3, 221-227 [in Russian].
  5. Levesque, D., Lim., C.S., Padioleau, C., Blouin, A. (2011) Measurement of texture in steel by laser-ultrasonic surface waves. J. of Physics: Conference Series, 278, 1-4. https://doi.org/10.1088/1742-6596/278/1/012007
  6. Skalsky, V.R., Nazarchuk, Z.T., Girny, S.I. (2012) Influence of analytically-absorbed hydrogen on Young’s modulus of structural steel. Fiz.-Khimich. Mekhanika Materialiv, 4, 68-75 [in Ukrainian].
  7. Bezymyanny, Yu.G., Koziratsky, E.A. (2006) Characterization of properties of fibrous materials by velocity of elastic wave propagation. Akustychny Visnyk, 1, 15-20 [in Russian].
  8. Zaporozhets, O.I., Dordienko, N.A., Mikhajlovsky, V.A. (2016) Acoustic and elastic properties of wall components of WWER-440 reactor body. Metallofizika i Novejshie Tekhnologii, 6, 795-813 [in Russian]. https://doi.org/10.15407/mfint.38.06.0795
  9. Muraviov, V.V., Zuev. L.B., Komarov, K.L. (1996) Sound velocity and structure of steel and alloys. Novosibirsk, Nauka [in Russian].
  10. Cheremskoj, P.G., Slezov, V.V., Betekhin, V.I. (1990) Pores in solid. Moscow, Energoatomizdat [in Russian].
  11. Shutilov, V.A. (1980) Fundamentals of supersonics. Leningrad, Izd-vo Leningrad. Un-ta [in Russian].
  12. Adamesku, R.A., Geld, P.V., Mityushov, E.A. (1985) Anisotropy of physical properties of metals. Moscow, Metallurgiya [in Russian].
  13. Nikitina, N.E. (2005) Acoustoelasticity. Experience of practical application. Nizhny Novgorod, Talam [in Russian].
  14. Truel, R., Elbaum, C., Chick, B. (1972) Ultrasonic methods in solid state physics. Moscow, Mir [in Russian].