Сучасна електрометалургія, 2021, #1, 39-47 pages
Мікроструктура та механічні властивості деталей із високоміцних титанових сплавів, отриманих методом WAAM (Огляд)
Р.В. Селін, С.Л. Шваб, М.М. Димань
ІЕЗ ім. Є.О. Патона НАН України. 03150, м. Київ, вул. Казимира Малевича, 11. E-mail: office@paton.kiev.ua
Реферат
Адитивне виробництво (Additive Manufacturing) — це створення виробів, засноване на поетапному додаванні матеріалу на основу у вигляді плоскої платформи або осьової заготовки. Wire Arc Additive Manufacturing
дуже перспективна технологія, що дозволяє виготовляти великогабаритні деталі складної форми з матеріалів
з високою доданою вартістю. Ця технологія є частиною процесів адитивного виробництва, яка використовує
металеві дроти в якості присадного матеріалу, а дугу, як джерело енергії. В даній оглядовій роботі розглянуто
процес отримання деталей із титанових сплавів методом Wire Arc Additive Manufacturing, який має суттєві
переваги перед іншими процесами адитивного виробництва — високі ефективність використання ресурсів та
продуктивність, низьку вартість обладнання. Отримання деталей із високоміцних титанових сплавів за допомогою методу Wire Arc Additive Manufacturing дозволяє контролювати мікроструктуру титанових сплавів, що
необхідно, оскільки високоміцні титанові сплави дуже чутливі до термічного циклу. Розглянуто різні методи
контролю мікроструктури деталей із титанових сплавів, її властивості та вплив на механічні показники деталі.
Бібліогр. 39, табл. 3, рис. 9.
Ключові слова: адитивне виробництво; WAAM; високоміцні титанові сплави; мікроструктура; механічні властивості
Received 22.01.2021
Список літератури
1. Martina, F., Colegrove, P.A., Williams, S.W., Meyer, J. (2015)
Microstructure of interpass rolled wire+arc additive manufacturing
Ti–6Al–4V components. Metallurg. and Mater. Transact.
A, 46(12), 6103–6118.
2. Bekker, A.C., Verlinden, J.C. (2018) Life cycle assessment
of wire+ arc additive manufacturing compared to green sand
casting and CNC milling in stainless steel. J. of Cleaner Production,
177, 438–447.
3. Lütjering, G.,Williams, J.C. (2007) Titanium. Springer Science
& Business Media.
4. Wang, Q., Ji, C., Wang, Y. et al. (2013) β-Ti alloys with low
young’s moduli interpreted by cluster-plus-glue-atom model.
Metallurg. and Mater. Transact. A, 44(4), 1872–1879.
5. DebRoy, T., Wei, H.L., Zuback, J.S. et al. (2018) Additive
manufacturing of metallic components–process, structure and
properties. Progress in Materials Sci., 92, 112–224.
6. Wang, F., Williams, S., Rush, M. (2011) Morphology investigation
on direct current pulsed gas tungsten arc welded additive
layer manufactured Ti6Al4V alloy. Inter. J. Adv. Manuf.
Technol., 57(5), 597–603.
7. Ding, D., Pan, Z., Cuiuri, D. et al. (2016) Bead modelling and
implementation of adaptive MAT path in wire and arc additive
manufacturing. Robotics and Computer-Integrated Manufacturing,
39, 32–42.
8. Wang, F., Williams, S., Colegrove, P., Antonysamy, A.A.
(2013) Microstructure and mechanical properties of wire and
arc additive manufactured Ti–6Al–4V. Metallurg. and Mater.
Transact. A, 44(2), 968–977.
9. Mereddy, S., Bermingham, M.J., Kent, D. et al. (2018) Trace
carbon addition to refine microstructure and enhance properties
of additive-manufactured Ti–6Al–4V. JOM, 70(9),
1670–1676.
10. Mereddy, S., Bermingham, M.J., StJohn, D.H., Dargusch,
M.S. (2017). Grain refinement of wire arc additively manufactured
titanium by the addition of silicon. J. of Alloys and
Compounds, 695, 2097–2103.
11. Zuback, J.S., Palmer, T.A., DebRoy, T. (2019) Additive manufacturing
of functionally graded transition joints between ferritic
and austenitic alloys. Ibid., 770, 995–1003.
12. Onuike, B., Bandyopadhyay, A. (2018) Additive manufacturing
of Inconel 718 Ti–6Al–4V bimetallic structures. Additive
Manufacturing, 22, 844–851.
13. Wang, J., Pan, Z., Ma, Y. et al. (2018) Characterization of wire
arc additively manufactured titanium aluminide functionally
graded material: microstructure, mechanical properties and
oxidation behaviour. Mater. Sci. and Engin. A, 734, 110–119.
14. Hernández-Nava, E., Mahoney, P., Smith, C.J. et al. (2019)
Additive manufacturing titanium components with isotropic
or graded properties by hybrid electron beam melting/hot isostatic
pressing powder processing. Sci. Reports, 9(1), 1–11.
15. Baufeld, B., Brandl, E., Van der Biest, O. (2011) Wire based additive
layer manufacturing: Comparison of microstructure and
mechanical properties of Ti–6Al–4V components fabricated by
laser-beam deposition and shaped metal deposition. J. Materials
Proc. Technology, 211(6), 1146–1158.
16. Åkerfeldt, P., Antti, M.L., Pederson, R. (2016) Influence of microstructure
on mechanical properties of laser metal wire-deposited
Ti–6Al–4V. Mater. Sci. and Engin. A, 674, 428–437.
17. Donoghue, J., Antonysamy, A.A., Martina, F. et al. (2016) The
effectiveness of combining rolling deformation with Wire–
Arc Additive Manufacture on β-grain refinement and texture
modification in Ti–6Al–4V. Materials Characterization, 114,
103–114.
18. Antonysamy, A.A., Meyer, J., Prangnell, P.B. (2013) Effect of
build geometry on the β-grain structure and texture in additive
manufacture of Ti–6Al–4V by selective electron beam melting.
Ibid., 84, 53–168.
19. Antonysamy, A.A., Prangnell, P.B., Meyer, J. (2012) Effect
of wall thickness transitions on texture and grain structure in
additive layer manufacture (ALM) of Ti–6Al–4V. Mat. Sci.
Forum, 706, 205–210. Transact. Tech. Publ. Ltd.
20. Al-Bermani, S.S., Blackmore, M.L., Zhang, W., Todd, I.
(2010) The origin of microstructural diversity, texture, and
mechanical properties in electron beam melted Ti–6Al–4V.
Metallurg. and Mater. Transact. A, 41(13), 3422–3434.
21. Vilaro, T., Colin, C., Bartout, J.D. (2011) As-fabricated and
heat-treated microstructures of the Ti–6Al–4V alloy processed
by selective laser melting. Ibid., 42(10), 3190–3199.
22. Bantounas, I., Dye, D., Lindley, T.C. (2010) The role of microtexture
on the faceted fracture morphology in Ti–6Al–4V
subjected to high-cycle fatigue. Acta Materialia, 58(11),
3908–3918.
23. Ho, A., Zhao, H., Fellowes, J.W. et al. (2019) On the origin
of microstructural banding in Ti–6Al–4V wire-arc based high
deposition rate additive manufacturing. Ibid., 166, 306–323.
24. Alonso, U., Veiga, F., Suárez, A., Artaza, T. (2020) Experimental
investigation of the influence of wire arc additive manufacturing
on the machinability of titanium parts. Metals, 10(1).
25. Cong, B., Ding, J., Williams, S. (2015) Effect of arc mode in
cold metal transfer process on porosity of additively manufactured
Al–6.3 % Cu alloy. The Inter. J. Adv. Manuf. Technol.,
76(9‒12), 1593–1606.
26. Ou, W., Mukherjee, T., Knapp, G.L. et al. (2018) Fusion zone
geometries, cooling rates and solidification parameters during
wire arc additive manufacturing. Inter. J. of Heat and Mass
Transfer, 127, 1084–1094.
27. Ding, D., Wu, B., Pan, Z. et al. (2020) Wire arc additive manufacturing
of Ti–6Al–4V using active interpass cooling. Materials
and Manufacturing Processes, 35(7), 845–851.
28. Zhou, Y., Qin, G., Li, L. et al. (2020) Formability, microstructure
and mechanical properties of Ti–6Al–4V deposited by
wire and arc additive manufacturing with different deposition
paths. Mater. Sci. and Engin. A, 772, 138654.
29. Wu, B., Pan, Z., Ding, D. et al. (2018) The effects of forced
interpass cooling on the material properties of wire arc additively
manufactured Ti–6Al–4V alloy. J. of Materials Proc.
Technology, 258, 97–105.
30. Davis, A.E., Breheny, C.I., Fellowes, J. et al. (2019) Mechanical
performance and microstructural characterisation of titanium
alloy-alloy composites built by wire-arc additive manufacture.
Mater. Sci. and Engin. A, 765, 138289.
31. (2013) ASTM Standard E399: Standard test method for linear-elastic plane-strain fracture toughness KIС of metallic
materials. ASTM Inter., Pennsylvania, US.
32. Attar, H., Ehtemam-Haghighi, S., Kent, D., Dargusch, M.S.
(2018) Recent developments and opportunities in additive manufacturing
of titanium-based matrix composites: A review. Inter. J.
of Machine Tools and Manufacture, 133, 85–102.
33. Martina, F., Williams, S.W., Colegrove, P.A. (2014) Improved
microstructure and increased mechanical properties of additive
manufacture produced Ti–6Al–4V by interpass cold rolling.
In: Proc. of 24th Inter. Solid Freeform Fabrication Symp.
(12–14 August, 2014, TX, USA), 490–496.
34. Wang, F., Williams, S., Colegrove, P., Antonysamy, A.A.
(2013) Microstructure and mechanical properties of wire and
arc additive manufactured Ti–6Al–4V. Metallurg. and Mater.
Transact. A, 44(2), 968–977.
35. Bantounas, I., Dye, D., Lindley, T.C. (2010) The role of microtexture
on the faceted fracture morphology in Ti–6Al–4V
subjected to high-cycle fatigue. Acta Materialia, 58(11),
3908–3918.
36. Smirnov, I., Polyakov, A., Sudenkov, Y. (2017) Strength
and fracture of ultrafine-grained titanium Grade 4. Procedia
Structural Integrity, 6, 196–200.
37. Attar, H., Calin, M., Zhang, L.C. et al. (2014) Manufacture by
selective laser melting and mechanical behavior of commercially
pure titanium. Mater. Sci. and Engin. A, 593, 170–177.
38. Yamanaka, K., Saito, W., Mori, M. et al. (2015) Preparation of
weak-textured commercially pure titanium by electron beam
melting. Additive Manufacturing, 8, 105–109.
39. (1994) ASM International, Materials Properties Handbook:
Titanium Alloys. Materials Park, OH.
Реклама в цьому номері: