Eng
Ukr
Rus
Print

2023 №03 (07) DOI of Article
10.37434/sem2023.03.01
2023 №03 (02)

Electrometallurgy Today 2023 #03
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2023, #3, 3-8 pages

Multipurpose electron beam unit UE-5810

S.V. Akhonin1, V.O. Berezos1, A.Iu. Severin1, V.D. Kornijchuk2, Iu.T. Ishchuk2, O.G. Erokhin2

1E.O. Paton Electric Welding Institute of the NAS of Ukraine. 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua
2SC «SPC «Titan» of the E.O. Paton Electric Welding Institute of the NAS of Ukraine». 26 Raketna Str., Kyiv. E-mail: titan.paton@gmail.com

Abstract
In order to implement the electron beam melting technologies the E.O. Paton Electric Welding Institute of NASU developed a multifunctional electron beam unit UE-5810 of megawatt class, designed for producing ingots of titanium and its alloys of up to 20 tons weight. Description of a multi-purpose universal electron beam unit UE-5810 and its specification are given. Functional features of the components of the unit, technological fixtures and electron gun are described. Electron beam unit UE-5810 is a reliable highly efficient installation of industrial type for melting highly reactive metals and alloys, as well as treatment of the produced ingots by surface melting. 12 Ref., 8 Fig.
Keywords: electron beam unit, electron beam gun, technological fixtures, melting, surface melting, ingot

Received 12.07.2023

References

1. Paton, B.E., Trigub, N.P., Akhonin, S.V., Zhuk, G.V. (2006) Electron beam melting of titanium. Kyiv, Naukova Dumka [in Russian].
2. Ladokhin, S.V. (2010) Prospects of creation of electron beam melting installations of new generation in Ukraine. Visnyk DDMA, 3, 170-173 [in Russian].
3. Xiaojun Wang, Zhanqian Chen, Feng Chen et al. (2007) The electron beam cold hearth melting technology. In: Proc. of 11th World Conf. on Titanium (Ti-2007): Science and Technology (3-7 June 2007, Kyoto, Japan). Ed. by M. Niinomi, Vol. 2, 185-188.
4. http://www.antares.com.ua/upload/file/3Titanium_Production_Presentation_rus.pdf
5. Trigub, N.P., Zhuk, G.V., Kornejchuk, V.D. et al. (2007) Commercial electron beam installation UE-5812. Advances in Elektrometallurgy, 1, 9-11.
6. Sobko-Nesteruk, O.E., Tretyak, N.G., Chaika, N.V. et al. (2012) New VT02 furnace for electron beam melting of titanium alloys constructed at the Antares company. Advances in Electrometallurgy, 3, 178-184.
7. Akhonin, S.V., Pikulin, A.N., Berezos, V.A. et al. (2019) Laboratory electron beam unit UE-208M. Suchasna Elektrometal., 3, 15-22 [in Russian]. https://doi.org/10.15407/sem2019.03.03
8. Trigub, N.P., Zhuk, G.V., Pap, P.A. et al. (2003) Electron beam installation UE-121. Advances in Electrometallurgy, 2, 17-20.
9. Paton, B.E., Trigub, N.P., Kozlitin, D.A. et al. (1997) Electron beam melting. Kyiv, Naukova Dumka [in Russian].
10. Paton, B.E., Trigub, N.P., Akhonin, S.V. (2005) Producing of titanium alloys from uncrushed blocks of spongy titanium by electron beam melting. Titan, 2, 23-25 [in Russian].
11. Pikulin, A.N., Zhuk, G.V., Trigub, N.P., Akhonin, S.V. (2003) Electron beam fusion of titanium ingots. Advances in Electrometallurgy, 4, 17-19.
12. Pikulin, A.N. (2016) Electron beam fusion of ingots of complexly- alloyed titanium alloys. Sovrem. Elektrometall., 3, 26-30. https://doi.org/10.15407/sem2016.03.05

Advertising in this issue: