Eng
Ukr
Rus
Print

2024 №02 (06) DOI of Article
10.37434/sem2024.02.07
2024 №02 (08)

Electrometallurgy Today 2024 #02
"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2024, #2, 46-52 pages

Heat treatment influence on the structure and properties of Ti–28Al–7Nb–2Mo–2Cr titanium aluminide and its welded joints

S.V. Akhonin, V.Yu. Bilous, A.Yu. Severyn, R.V. Selin, I.K. Petrichenko

E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: office@paton.kiev.ua

Abstract
The influence of furnace annealing on the structure of cast metal in 200 mm ingots from intermetallic titanium alloy Ti–28Al–7Nb–2Mo–2Cr produced by electron beam melting and of its welded joints produced by the method of electron beam welding was determined. It is established than the metal of 200 mm Ti–28Al–7Nb–2Cr–2Mo ingots based on titanium aluminide is readily welded under the conditions of application of such technological measures as preheating and local heat treatment. It is shown that annealing at the temperature of 1260 °C for 10 h led to formation of a uniform microstructure in the base metal, HAZ and weld metal, decomposition of the duplex structure and absence of regions with a two-phase (γ+α2)-lamel structure. Room temperature strength of welded joints after annealing is equal to 746 MPa or 98 % of base metal strength. 33 Ref., 1 Tabl., 5 Fig.
Keywords: titanium aluminide, electron beam welding, welded joints, duplex structure, lamellar structure, strength

Received: 15.03.2024
Received in revised form: 04.04.2024
Accepted: 10.06.2024

References

1. Peters, M., Kumpfert, J., Ward, C.H., Leyens, C. (2003) Titanium alloys for aerospace applications. Adv. Eng. Mater., 5, 419-427. https://doi.org/10.1002/adem.200310095
2. Williams, J.C., Boyer, R.R. (2020) Opportunities and issues in the application of titanium alloys for aerospace components metals. Metals, 10(6), 705. https://doi.org/10.3390/met10060705
3. Burtscher, M., Klein, Y., Lindemann, J. et al. (2020) An advanced TiAl alloy for high-performance racing applications. Materials, 13, 4720. https://doi.org/10.3390/ma13214720
4. Hu, D. (2001) Effect of composition on grain refinement in TiAl-based alloys. Intermetallics, 9, 1037-1043. https://doi.org/10.1016/S0966-9795(01)00079-6
5. Xia, Q., Wang, J.N., Yang, J., Wang, Y. (2001) On the massive transformation in TiAl-based alloys. Intermetallics, 9, 361-367. https://doi.org/10.1016/S0966-9795(01)00017-6
6. Bewlay, B.P., Nag, S., Suzuki, A., Weimer, M.J. (2016) TiAl alloys in commercial aircraft engines. Materials at High Temperatures, 33, 549-559. https://doi.org/10.1080/09603409.2016.1183068
7. Iliin, A.A., Lolachev, B.A., Polkin, I.S. (2009) Titanium alloys. Composition, structure, properties: Refer. Book. VILS-MATI [in Russian].
8. Clemens, H., Mayer, S. (2016) Intermetallic titanium aluminides in aerospace applications - processing, microstructure and properties. Materials at High Temperatures, 33, 560-570. https://doi.org/10.1080/09603409.2016.1163792
9. Kim, Y.W., Kim, S.L. (2018) Advances in gammalloy materials- processes-application technology: Successes, dilemmas, and future. JOM, 70, 553-560. https://doi.org/10.1007/s11837-018-2747-x
10. Hu, D., Botten R.R. (2002) Phase transformations in some TiAl-based alloy. Intermetallics, 10, 701-715. https://doi.org/10.1016/S0966-9795(02)00047-X
11. Kim, Y.-W., Dimiduk, D.M. (2002) Designing gamma TiAl alloys: Fundamentals, Strategy and Productions. Intermetallics, 10, 531.
12. Cobbinah, P.V., Matizamhuka, W.R. (2019) Solid-state processing route, mechanical behaviour, and oxidation resistance of TiAl alloys. Adv. Mater. Sci. and Eng., 1, 4251953. https://doi.org/10.1155/2019/4251953
13. Kenel, C., Leinenbach, C. (2016) Influence of Nb and Mo on microstructure formation of rapidly solidified ternary Ti-Al- (Nb, Mo) alloys. Intermetallics, 69, 82-89. https://doi.org/10.1016/j.intermet.2015.10.018
14. Kim K.W., Klemens H.et al. (2003) Gamma titanium aluminides. TMS, Warrendale, PA, USA.
15. (2003) Titanium and titanium alloys. Fundamentals and applications. Eds by Leyens and M. Peters. Weinheim. WILEY-VCH Verlag GmbH & Co, KGaA, Germany.
16. Burtscher, M., Klein, T., Mayer, S. et al. (2019) The creep behavior of a fully lamellar γ-TiAl based alloy. Intermetallics, 114, 106611. https://doi.org/10.1016/j.intermet.2019.106611
17. Hu, D. (2001) Effect of composition on grain refinement in TiAl-based alloys. Intermetallics, 9, 1037-1043. https://doi.org/10.1016/S0966-9795(01)00079-6
18. Xia, Q., Wang, J.N., Yang, J., Wang, Y. (2001) On the massive transformation in TiAl-based alloys. Intermetallics, 9, 361-367. https://doi.org/10.1016/S0966-9795(01)00017-6
19. Santos, D.S., Bououdina, M., Fruchart, D. (2002) Structural and thermodynamic properties of the pseudo-binary TiCr2− xVx compounds with 0.0 ≤ x ≤ 1.2. J. of Alloys and Compounds, 340(6), 1-2, 101. https://doi.org/10.1016/S0925-8388(02)00013-0
20. Chen, G.Q., Zhang, B.G., Liu, W., Feng, J.C. (2011) Crack formation and control upon the electron beam welding of TiAl-based alloys. Intermetallics, 19(12), 1857-1863. https://doi.org/10.1016/j.intermet.2011.07.017
21. Chaturvedi, M.C., Xu, Q., Richards, N.L. (2001) Development of crack-free welds in a TiAl-based alloy. J. Materials Proc. Technology, 118(1), 74-78. https://doi.org/10.1016/S0924-0136(01)00870-6
22. Biamino, S., Penna, A., Ackelid, U. et al. (2011) Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation. Intermetallics, 19(6), 776-781. https://doi.org/10.1016/j.intermet.2010.11.017
23. Reisgen, U., Olschok, S., Backhaus, A. (2010) Electron beam welding of titanium aluminides - Influence of the welding parameters on the weld seam and microstructure. Materialwissenschaft und Werkstofftechnik. https://doi.org/10.1002/mawe.201000683
24. Cao, J., Qi, J., Song, X., Feng, J. (2014) Welding and joining of titanium aluminides. Materials, 7, 4930-4962. https://doi.org/10.3390/ma7074930
25. Akhonin, S.V., Bilous, R.V., Selin, I.K. et al. (2022) Argon-arc welding of high-temperature titanium alloy doped by silicon. The Paton Welding J., 5, 26-33. https://doi.org/10.37434/tpwj2022.05.04
26. Liu, P., Zhang, G.M., Zhai, T., Feng, K.Y. (2017) Effect of treatment in weld surface on fatigue and fracture behavior of titanium alloys welded joints by vacuum electron beam welding. Vacuum, 141, 176-180. https://doi.org/10.1016/j.vacuum.2017.04.019
27. Huang, J.L., Warnken, N., Gebelin, J.C. et al. (2012) On the mechanism of porosity formation during welding of titanium alloys. Acta Materialia, 60(6-7), 3215-3225. https://doi.org/10.1016/j.actamat.2012.02.035
28. Li, Y.J., Wu, A.P., Quan, L.I. et al. (2019) Effects of welding parameters on welds hape and residual stresses in electron beam welded Ti2AlNb alloy joints. Transact. of Non ferrous Metals Society of China, 29(1), 67-76. https://doi.org/10.1016/S1003-6326(18)64916-7
29. Pederson, R., Niklasson, F., Skystedt, F., Warren, R. (2012) Microstructure and mechanical properties of friction-and electron-beam welded Ti-6Al-4V and Ti-6Al-2Sn-4Zr-6Mo. Materials Sci. and Eng., A, 552, 555-565. https://doi.org/10.1016/j.msea.2012.05.087
30. Tsai, C.J. (2014) Improved mechanical properties of Ti-6Al-4V alloyby electron beam welding process plus annealing treatments and its microstructural evolution. Materials & Design, 60, 587-598. https://doi.org/10.1016/j.matdes.2014.04.037
31. Zamkov, V.N., Sabokar, V.K., Vrzhizhevsky, E.L. et al. (2005) Electron beam welding of titanium gamma-aluminide. In: Proc. of CIS Conf. Ti-2005 (Ukraine, Kyiv, 22-25 May), 157-164.
32. Grigorenko, S.G., Grigorenko, G.M., Zadorozhnyuk, O.M. (2017) Intermetallics of titanium. Peculiar features, properties, application (Review). Suchasna Ellektrometal., 3, 51-58. https://doi.org/10.15407/sem2017.03.08
33. Chandra, U., Hartwig, I., Ulrich K. (1973) Einsatz electrisch erzeudneter Gasplasmen in der me tallurqischen Verfanrenstechnik Umschmelzen von Titan-und Eisen-Schwamm zu Blocken in einen Plasmaofen. Techn. Mitt. Krupp Forschugsber, BA31, H.1, 1-7.

Advertising in this issue: