Eng
Ukr
Rus
Print

2024 №03 (05) 2024 №03 (07)

Electrometallurgy Today 2024 #03
Electrometallurgy Today (Sovremennaya Elektrometallurgiya), 2024, #3, 45-52 pages

Nitrogen dissolution in austenitic steel 10Kh14AG15 at levitation melting

V.O. Shapovalov1, V.G. Mogylatenko2, R.V. Ljutyy2, R.V. Kozin1

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: shapovalov@paton.kiev.ua
2National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute». 37 Prospect Beresteiskyi, 03056, Kyiv, Ukraine. E-mail: vmogilatenko@gmail.com

Abstract
The paper presents a comparison of different methods of calculation of nitrogen solubility in steel 10Kh14AG15. A comparison of Wagner, Chimpan, and Corrigan methods, calculations by V.I. Lakomsky with co-authors, analytical and experimental material of J. Pitkala with co-authors, etc, was made. Obtained calculation data of nitrogen solubility in steel 10Kh14AG15 in the temperature range of 1873…2300 K showed the smallest discrepancy between Chimpan and Corrigan and V.I. Lakomsky methods and the smallest discrepancy of experimentally determined nitrogen solubility in steel 10Kh14AG15 at 1923 K with the data derived by V.I. Lakomsky at PWI. At technological calculations for melting steel 10Kh14AG15 it is recommended to maintain the pressure of 0.3…0.7 atm in the system. 21 Ref., 5 Tabl., 3 Fig.
Keywords: nitrogen-containing steels, chromium-manganese steels, nitrogen, solubility calculation, nitrogen solubility

Received: 22.03.2024
Received in revised form: 17.07.2024
Accepted: 09.09.2024

References

1. Grigorenko, G.M., Pomarin, Yu.M. (1989) Hydrogen and nitrogen in metals during plasma melting. Kyiv, Naukova Dumka [in Russian].
2. Talha, Mohd, Behera, C.K., Sinha, O.P. (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Materials Sci. and Eng.: C, 33(7), 3563–3575. DOI: http://dx.doi.org/10.1016/j.msec.2013.06.002
3. Kamali Hamidreza, Xie Haibo, Bi Hongyun et al. (2022) Void formation and crack propagation in a Cr–Mn–N metastable austenitic stainless steel during bending. Advanced Eng. Materials. DOI: http://dx.doi.org/10.1002/adem.202200891. https://www.researchgate.net/publication/365583982
4. Lefor, K., Walter, M., Weddeling, A. et al. (2015) Influence of the PM-processing route and nitrogen content on the properties of Ni-free austenitic stainless steel. Theisen. Metallurgical and Materials Transact. A, 46, 1154–1167. DOI: http://dx.doi.org/10.1007/s11661-014-2701-7
5. Minha Park, Moon Seok Kang, Geon-Woo Park et al. (2019) The effects of recrystallization on strength and impact toughness of cold-worked high-Mn austenitic steels. Metals., 9, 948. DOI: http://dx.doi.org/10.3390/met9090948
6. Wei Wang, Wei Yan, Ke Yang et al. (2010) Temperature dependence of tensile behaviors of nitrogen-alloyed austenitic stainless steels. J. Materials Eng. and Perform., 19, 1214–1219. DOI: http://doi.org/10.1007/s11665-010-9603-7
7. Syahwira Taqwa Triadi, Cherly Selindiana, Hermawan Judawisastra, Aditianto Ramelan (2022) Dynamic plastic deformation induced by repetitive hammering on Cr–Mn austenitic stainless steel. Metalurgi, 37(1), 7–14. DOI: http://dx.doi.org/10.14203/metalurgi.v37i1.618
8. Shypytsyn, S.Y., Kirchu, I.F., Stepanova, T.V., Kucherenko, P.M. (2019) Mechanical and functional properties of Cr– (Ni)–Mn–N austenitic high-strength and heat-resistant steels. Metaloznavstvo ta Obrobka Materialiv, 91(3), 23–29. DOI: http://doi.org/10.15407/mom2019.03.023
9. Risto Juhani Ilola, Hannu Eelis Hanninen, Kari Martti Ullakko (1996) Mechanical properties of austenitic high-nitrogen Cr–Ni and Cr–Mn steels at low temperatures. ISIJ Inter., 36(7), 873–877. DOI: http://dx.doi.org/10.2355/isijinternational.36.873
10. Grigoryan, V.A., Stomakhin, A.Ya., Utochkin, Yu.I. et al. (2007) Physico-chemical calculations of electric steel-making process: Coll. of Problems with Solutions. Moscow, MISiS [in Russian].
11. Chipman J., Corrigan, D.A. (1965) Prediction of the solubility of nitrogen in molting steel. Transact. AIME, 233(7), 1249–1252.
12. Panchenko, A.N., Suslo, N.V. (2015) To problem of improvement of operational properties of 30Kh14G8Yu2L steel. Teoriya i Praktika Metallurgii, 3(6), 13–15 [in Russian].
13. Pitka JyrkI, Holappa Lauri, Jokilaakso Ari (2024) Nitrogen control in production of N-alloyed stainless steels in AOD converter: Application of sieverts law. Metall. Transact. B, 55, 524–536. DOI: https://doi.org/10.1007/s11663-023-02974-3
14. Kengo Kato, Hideki Ono (2023) Thermodynamic analysis on slag/metal reactions in steelmaking process using direct reduced iron and steel scraps. ISIJINT, 64(6), 398. DOI: https://doi.org/10.2355/isijinternational.ISJINT-2023-398
15. Kengo Kato, Hiroki Ito, Hideki Ono (2022) Interaction coefficients of Cu and Sn with Mn in molten iron at 1873 K. ISIJ Inter., 62(12), 2599–2609. DOI: https://doi.org/10.2355/isijinternational.ISIJINT-2022-112
16. Pitkala, J., Holappa, L., Jokilaakso, A. (2022) A study of the effect of alloying elements and temperature on nitrogen solubility in industrial stainless steelmaking. Metallurgical and Materials Transact. B: Process Metallurgy and Materials Proc. Sci., 53(4), 2364–2376. DOI: https://doi.org/10.1007/s11663-022-02534-1
17. GOST 12359‒99 (ISO 4945‒77): Carbon, alloyed and high-alloyed steels. Methods for determination of nitrogen. https://dnaop.com/get/71394/
18. http://www.splav-kharkov.com/mat_start.php?name_id=318
19. Zhouhua Jiang, Huabing Li, Zhaoping Chen et al. (2005) The nitrogen solubility in molten stainless steel. Steel Research Inter., 76(10), 730–735. DOI: http://doi.org/10.1002/srin.200506090
20. Lakomsky, V.I., Lakomsky, V.V. (2012) Nitrogen in liquid steels and slags. Kyiv, Naukova Dumka [in Russian].
21. Shapovalov,V.O., Mogylatenko, V.G., Lyutyi, R.V., Kozin, R.V. (2023) Nitrogen absorption by 04Kh18N10 steel in plasma-arc melting under slag of CaO–Al2O3 system. Suchasna Elektrometal., 3, 35–43. DOI: https://doi.org/10.37434/sem2023.04.05

Advertising in this issue: