"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #1, 45-50 pages
Influence of heat treatment on the structure, properties and life of flat tungsten cathodes
L.A. Krushinska1, Ya.A. Stelmakh1, R.A. Tkach2, O.O. Yukalchuk2, A.A. Dudnik3
1E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: lkrushynska@gmail.com
2State-run Company «International Center for Electron Beam Technologies
of E.O. Paton Electric Welding Institute of the NAS of Ukraine».
68 Antonovicha Str., 03150, Kyiv, Ukraine. E-mail: tkachroman@gmail.com
3LLD «TANGSTEN». 19a Dniprovska Naberezhna, of. 33, 02081, Kyiv, Ukraine. E-mail: tungsten.kom@gmail.com
Abstract
The effect of heat treatment on the structure and properties of flat tungsten thermionic cathodes (W-cathodes) produced
by hot pressing (flattening) of blanks from 99.99 % pure tungsten wire was investigated. The influence of temperature
(800…1200 °C) and vacuum annealing time (0.3…2.0 h) on the formation of a recrystallization structure in W-cathodes
was studied; comprehensive comparative studies of the structure, mechanical and operational properties were carried
out. It was found that to increase the service life of W cathodes, a mixed structure should be formed in them in the
following quantitative ratio: 5…25 % — equiaxed recrystallized grains 1…8 μm in size; the remaining volume of the
cathode material should preserve the original oriented structure. 18 Ref., 5 Fig.
Keywords: thermionic cathodes, tungsten, electron beam installations, recrystallization, microstructure
Received: 15.01.2025
Received in revised form: 02.02.2025
Accepted: 25.02.2025
References
1. Zuev, I.V. (1998) Processing of materials with concentrated energy flows. Moscow, Izd-vo MEI [in Russian].
2. Movchan, B.A., Yakovchuk, K.Yu. (2004) Electron beam installations for evaporation and deposition of inorganic materials and coatings. Sovrem. Elektrometall., 2, 10-15 [in Russian].
3. Shapoval, A.A. (2011) Using highly processes in deformation trial tungsten ribbon. Visnyk KremenchukNational University, Pt 1, 67(2), 65-67 [in Russian].
4. Yakovchuk, K.Yu., Barskov, V.O., Klimenko, I.G. et al. (2018) Electron-beam projector with linear thermionic cathode. Pat. 113607, Ukraine, Int. Cl. H01J37/06 H01J37/065 [in Ukrainian].
5. Movchan, B.O. (1994) Linear thermionic cathode electron gun. Pat. 21440, Ukraine, Int. Cl. H01J29/46 H01J29/48 [in Ukrainian].
6. Yaskolko, A.A. (2010) Methods and results of studying materials of cathode of powerful X-ray tubes. Syn. of Thesis forPh. D. Dissertation. Moscow, A.A. Baykov Institute of Metallurgy and Materials Science [in Russian].
7. Taubin, M.L., Platonov, V.F., Yaskolko, A.A. (2009) Medical X-ray tube cathodes. Med. Tekhnika, 253(1), 44-47 [in Russian].
8. Shi Lei, L., Jun Yan, G., Yun Fei, Y. et al. (2020) A review on recent progress of thermionic cathode. Tungsten, 2, 289-300.
https://doi.org/10.1007/s42864-020-00059-19. Dragobetskyi V.V., Shapoval O.O., Shchepetov V.V. et al. (2017) Controlled effects of plastic deformation of blanks for metallurgy and transport: monograph: Monograph. Kharkiv, Madrid Printing House.
10. Ignatovich, S.R., Zakiev, I.M. (2011) Universal micro/nano-indentometer "MicronGamma". Zavodskaya Laboratoriya, 77(1), 61-67 [in Russian].
11. Golovin, S.A, Krystal, M.A, Legner, M.N, Rabinovich, E.M. (1968) Recrystallization diagram of tungsten powder. Physics and Chemistry of Metal Processing, 5, 168-172 [in Russian].
12. Savitsky, E.M., Povarova, K.B., Makarov, P.V. (1978) Metallurgy of tungsten. Moscow, Metallurgiya [in Russian].
13. Lassner, E., Schubert, W.D. (1999) Tungsten: Properties, chemistry, technology of the element. Alloys and chemical compounds. Berlin, Springer-Verlag.
https://doi.org/10.1007/978-1-4615-4907-914. Humphreys, F.J., Hatherly, M. (2004) Recrystallization and related annealing phenomena. Elsevier.
https://doi.org/10.1016/B978-008044164-1/50016-515. Oliver, W.C., Pharr, G.M. (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. of Materials Research., 19(1), 3-20.
https://doi.org/10.1557/jmr.2004.19.1.316. Grigoriev, I.S., Meilikhov, E.Z. (1991) Physical Quantities: Handbook. Moscow, Energoatom.
17. Pugachevsky, M.A. (2010) Determination of the elastic modulus of tungsten nanowires. Letters to the J. of Technical Physics, 36(14), 7-12 [in Russian].
https://doi.org/10.1134/S106378501007016318. Frost, G.J., Ashby, M.F. (1989) Maps of deformation mechanisms. Moscow, Metallurgiya [in Russian].
Advertising in this issue: