Eng
Ukr
Rus
Print
2025 №01 (07) DOI of Article
10.37434/sem2025.01.08
2025 №01 (09)

Electrometallurgy Today 2025 #01
"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #1, 45-50 pages

Influence of heat treatment on the structure, properties and life of flat tungsten cathodes

L.A. Krushinska1, Ya.A. Stelmakh1, R.A. Tkach2, O.O. Yukalchuk2, A.A. Dudnik3

1E.O. Paton Electric Welding Institute of the NAS of Ukraine 11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine. E-mail: lkrushynska@gmail.com
2State-run Company «International Center for Electron Beam Technologies of E.O. Paton Electric Welding Institute of the NAS of Ukraine». 68 Antonovicha Str., 03150, Kyiv, Ukraine. E-mail: tkachroman@gmail.com
3LLD «TANGSTEN». 19a Dniprovska Naberezhna, of. 33, 02081, Kyiv, Ukraine. E-mail: tungsten.kom@gmail.com

Abstract
The effect of heat treatment on the structure and properties of flat tungsten thermionic cathodes (W-cathodes) produced by hot pressing (flattening) of blanks from 99.99 % pure tungsten wire was investigated. The influence of temperature (800…1200 °C) and vacuum annealing time (0.3…2.0 h) on the formation of a recrystallization structure in W-cathodes was studied; comprehensive comparative studies of the structure, mechanical and operational properties were carried out. It was found that to increase the service life of W cathodes, a mixed structure should be formed in them in the following quantitative ratio: 5…25 % — equiaxed recrystallized grains 1…8 μm in size; the remaining volume of the cathode material should preserve the original oriented structure. 18 Ref., 5 Fig.
Keywords: thermionic cathodes, tungsten, electron beam installations, recrystallization, microstructure

Received: 15.01.2025
Received in revised form: 02.02.2025
Accepted: 25.02.2025

References

1. Zuev, I.V. (1998) Processing of materials with concentrated energy flows. Moscow, Izd-vo MEI [in Russian].
2. Movchan, B.A., Yakovchuk, K.Yu. (2004) Electron beam installations for evaporation and deposition of inorganic materials and coatings. Sovrem. Elektrometall., 2, 10-15 [in Russian].
3. Shapoval, A.A. (2011) Using highly processes in deformation trial tungsten ribbon. Visnyk KremenchukNational University, Pt 1, 67(2), 65-67 [in Russian].
4. Yakovchuk, K.Yu., Barskov, V.O., Klimenko, I.G. et al. (2018) Electron-beam projector with linear thermionic cathode. Pat. 113607, Ukraine, Int. Cl. H01J37/06 H01J37/065 [in Ukrainian].
5. Movchan, B.O. (1994) Linear thermionic cathode electron gun. Pat. 21440, Ukraine, Int. Cl. H01J29/46 H01J29/48 [in Ukrainian].
6. Yaskolko, A.A. (2010) Methods and results of studying materials of cathode of powerful X-ray tubes. Syn. of Thesis forPh. D. Dissertation. Moscow, A.A. Baykov Institute of Metallurgy and Materials Science [in Russian].
7. Taubin, M.L., Platonov, V.F., Yaskolko, A.A. (2009) Medical X-ray tube cathodes. Med. Tekhnika, 253(1), 44-47 [in Russian].
8. Shi Lei, L., Jun Yan, G., Yun Fei, Y. et al. (2020) A review on recent progress of thermionic cathode. Tungsten, 2, 289-300. https://doi.org/10.1007/s42864-020-00059-1
9. Dragobetskyi V.V., Shapoval O.O., Shchepetov V.V. et al. (2017) Controlled effects of plastic deformation of blanks for metallurgy and transport: monograph: Monograph. Kharkiv, Madrid Printing House.
10. Ignatovich, S.R., Zakiev, I.M. (2011) Universal micro/nano-indentometer "MicronGamma". Zavodskaya Laboratoriya, 77(1), 61-67 [in Russian].
11. Golovin, S.A, Krystal, M.A, Legner, M.N, Rabinovich, E.M. (1968) Recrystallization diagram of tungsten powder. Physics and Chemistry of Metal Processing, 5, 168-172 [in Russian].
12. Savitsky, E.M., Povarova, K.B., Makarov, P.V. (1978) Metallurgy of tungsten. Moscow, Metallurgiya [in Russian].
13. Lassner, E., Schubert, W.D. (1999) Tungsten: Properties, chemistry, technology of the element. Alloys and chemical compounds. Berlin, Springer-Verlag. https://doi.org/10.1007/978-1-4615-4907-9
14. Humphreys, F.J., Hatherly, M. (2004) Recrystallization and related annealing phenomena. Elsevier. https://doi.org/10.1016/B978-008044164-1/50016-5
15. Oliver, W.C., Pharr, G.M. (2004) Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. of Materials Research., 19(1), 3-20. https://doi.org/10.1557/jmr.2004.19.1.3
16. Grigoriev, I.S., Meilikhov, E.Z. (1991) Physical Quantities: Handbook. Moscow, Energoatom.
17. Pugachevsky, M.A. (2010) Determination of the elastic modulus of tungsten nanowires. Letters to the J. of Technical Physics, 36(14), 7-12 [in Russian]. https://doi.org/10.1134/S1063785010070163
18. Frost, G.J., Ashby, M.F. (1989) Maps of deformation mechanisms. Moscow, Metallurgiya [in Russian].

Advertising in this issue: