"Suchasna Elektrometallurgiya" (Electrometallurgy Today), 2025, #4, 17-25 pages
Recycling of nickel alloys by electroslag remelting
Yu.V. Kostetskyi, V.P. Petrenko, E.O. Pedchenko, G.O. Polishko, V.A. Zaitsev
E.O. Paton Electric Welding Institute of the NAS of Ukraine
11 Kazymyr Malevych Str., 03150, Kyiv, Ukraine.
E-mail: y.kostetsky@paton.kiev.ua
Abstract
The paper presents the results of experiments on recycling of nickel alloys through electroslag remelting (ESR) using
a current supplying mould. The research was conducted in the P-951 furnace, where rational modes of remelting electrodes
of a variable cross-section from nickel alloy waste were determined. The study confirmed the effectiveness of
recycling technological waste of EP648 nickel alloy by electroslag remelting using a current-supplying mould. Optimal
modes of remelting variable cross-section consumable electrodes were established to ensure process stability through
rational power distribution between the electrode and the current-supplying mould. The chemical composition of the
produced ingots met the regulatory requirements for the EP648 alloy, and the products made from these ingots successfully
passed quality control. The developed single-stage recycling technology allows nickel alloy waste to be returned
directly to the production cycle, demonstrating high practical potential for industrial application. The research results
can be used to improve the existing metal waste recycling methods and to develop new approaches to processing nickel
alloys waste. 23 Ref., 6 Tabl., 7 Fig.
Keywords: recycling, nickel alloy, electroslag remelting, dual-circuit ESR technology, current-supplying mould, ingot
Received: 15.09.2025
Received in revised form: 14.10.2025
Accepted: 12.11.2025
References
1. Branca, T., Colla, V., Algermissen, D. et al. (2020) Reuse and
recycling of by-products in the steel sector: Recent achievements
paving the way to circular economy and industrial
symbiosis in Europe. Metals, 10(345). DOI: https://doi.org/10.3390/met10030345
2. Domenech, T., Bahn-Walkowiak, B. (2019) Transition towards
a resource efficient circular economy in Europe: Policy
lessons from the EU and the member states. Ecological
Economics, 155, 7–19. Elsevier, Amsterdam. DOI: https://doi.org/10.1016/j.ecolecon.2017.11.001
3. Xie, J., Xia, Z., Tian, X., Liu, Y. (2023) Nexus and synergy
between the low-carbon economy and circular economy: A
systematic and critical review. Environmental Impact Assessment
Review, 100, 107077. DOI: https://doi.org/10.1016/j.eiar.2023.107077
4. Feng, H., Chen, L., Liu, X., Xie, Z. (2017) Construction
design for an iron and steel production process based on
the objectives of steel yield and useful energy. Inter. J. of
Heat and Mass Transfer, 111, 1192–1205. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.096
5. Watari, T., Mclellan, B. (2024) Decarbonizing the global
steel industry in a resource-constrained future — A systems
perspective. Philosophical Transact. of the Royal Society
A, 382(2284), 20230233. DOI: https://doi.org/10.1098/rsta.2023.0233
6. Diener, D.L., Tillman, A.M. (2016) Scrapping steel components
for recycling — Isn’t that good enough? Seeking improvements
in automotive component end-of-life. Resources,
Conservation and Recycling., 110, 48–60. DOI: https://doi.org/10.1016/j.resconrec.2016.03.001
7. Wu, L., Liu, K., Mei, H. et al. (2022) Thermodynamics analysis
and pilot study of reusing medium and high alloy steel
scrap using induction melting and electroslag remelting
process. Metals, 12(6), 944. DOI: https://doi.org/10.3390/met12060944
8. Varvara, D.A.I., Tintelecan, M., Aciu, C. et al. (2019) An assessment
of the substance losses from charge composition
used to the steelmaking — Key factor for sustainable steel
manufacturing. Procedia Manufacturing, 32, 15–21. DOI:
https://doi.org/10.1016/j.promfg.2019.02.177
9. Gandhewar, V.R., Bansod, S.V., Borade, A.B. (2011) Induction
furnace — A review. Inter. J. of Eng. and Techn., 3(4),
277–284.
10. Arh, B., Podgornik, B., Burja, J. (2016) Electroslag remelting:
a process overview. Materials and Technology, 50(6), 971–978. DOI: https://doi.org/10.17222/mit.2016.108
11. Mitchell, A. (2008) Electroslag technology for aerospace alloys.
Advances in Electrometallurgy, 4, 31–36 [in Russian].
12. Walek, J.,Odehnalová, A., Kocich, R. (2024) Analysis of thermophysical
properties of electroslag remelting and evaluation
of metallographic cleanliness of steel. Materials, 17(18),
4613. DOI 10.3390/ma17184613
13. Biktagirov, F.K., Veretilnyk, O.V., Shapovalov, V.O. et al.
(2021) Comparative indices of different methods of processing
shavings of high-alloyed steels and alloys. Suchasna
Elektrometalurhiya, 4, 11–15 [in Ukrainian]. DOI: https://doi.org/10.37434/sem2021.04.01
14. Kuskov, Yu.M., Ryabtsev, I.A., Kuzmenko, O.G., Lentyugov,
I.P. (2020) Electroslag technologies of surfacing and recycling
of metal and metal-containing waste. Kyiv, Interservice.
15. Mitchell, A. (2021) Electrode manufacture for the remelting
processes. Ironmaking & Steelmaking, 48(5), 505–513, DOI:
https://doi.org/10.1080/03019233.2020.1855690
16. Tsykulenko, A.K., Lantsmann, I.A., Medovar, L.B. et al.
(2000) Two-circuit method of electroslag remelting consumable
electrodes. Advances in Special Electrometallurgy, 3,
141–144.
17. Dong, Y., Jiang, Z., Cao, H. et al. (2016) Study of single-power,
two-circuit ESR process with current-carrying mold. Development
of the technique and its physical simulation. Metallurgical
and Materials Transact. B, 47(6), 3575–3581. DOI:
https://doi.org/10.1007/s11663-016-0813-8
18. Medovar, L., Stovpchenko, G., Jianjun, G. (2024) State of
the art of electroslag refining and challenges in the control
of ingot cleanness. In: Proc. of 12th Inter. Conf. on Molten
Slags, Fluxes and Salts MOLTEN 2024. Brisbane, AusIMM,
ID: P-04120-D5P7M3.
19. Medovar, L., Fedorovsky, B., Petrenko, V. (2005) ESR with
two power sources and process control. In: Proc. of Inter.
Symp. on Liquid Metal Processing and Casting, Santa-Fe,
New Mexico, 131–135.
20. Pedchenko, Ye., Medovar, L., Kostetsky, Yu. (2022) Electroslag
remelting as a method of recycling non-compact highspeed
steel tools. In: Proc. of 31st Inter. Conf. on Metallurgy
and Materials. Brno, TANGER Ltd, 142–148. DOI: https://doi.org/10.37904/METAL.2022.4455
21. Pedchenko, Ye.O., Petrenko, V.L., Kostetskyi, Yu.V. et
al. (2025) Electroslag remelting of variable cross-section
electrodes using a two-circuit scheme. In: Proc. of
the VII Inter. Conf. on Welding and Related Technologies
WRT 2024. Yaremche, CRC Press, 25–28. DOI: https://doi.org/10.1201/9781003518518-5
22. Kuskov, Yu.M., Solovyov, V.G. (2018) Experimental study of
slag and metal bath rotation during electroslag process in current-feeding mould. Avtomaticheskaya Svarka, 7, 41–43 [in
Russian]. DOI: https://doi.org/10.15407/as2018.07.07
23. Reitz J., Wietbrock B., Richter S. et al. (2011) Enhanced homogenization
strategy by electroslag remelting of high-manganese
TRIP and TWIP steels. Advanced Eng. Materials,13(5),
395–399. DOI: https://doi.org/10.1002/adem.201000322
Advertising in this issue: