Eng
Ukr
Rus
Print

2021 №04 (02) DOI of Article
10.37434/tdnk2021.04.03
2021 №04 (04)

Technical Diagnostics and Non-Destructive Testing 2021 #04
Technical Diagnostics and Non-Destructive Testing #4, 2021, pp. 25-34

Methods and means of early vibration diagnostics of rotating components of mechanisms of quay container handlers

I.M. Javorskyj2, R.M. Yuzefovych3, O.V. Lychak1, P.O. Semenov4


1G.V. Karpenko Physico-Mechanical Institute of NASU. 5 Naukova Str., 79060, Lviv, Ukraine. Е-mail: roman.yuzefovych@gmail.com
2Politechnika Bydgoska. 7 Prof. Sylwestra Kaliskiego, 85-796 Bydgoszcz, Poland
3Lviv Polytechnic National University. 12 S. Bandery str., 79013, Lviv, Ukraine
4Odesa National Maritime University. 34 I. Mechnikova Str., 65029, Odesa, Ukraine

The paper describes the properties of a model of vibration of interconnected rotating mechanisms in the form of biperiodically nonstationary random processes (BPNRP). Individual cases of such a model are considered, which enable performing data analysis by the methods of periodically nonstationary random processes (PNRP). These methods are used to analyze the condition of mechanisms at increased vibration level. Separation of deterministic and stochastic vibrations was performed and parameters describing the structure of hidden periodicities of the first and second order, were determined. The causes for increased vibration level were established. 18 Ref., 3 Tabl, 14 Fig.
Keywords: hoisting mechanism, vibration, periodical nonstationarity, deterministic oscillations, amplitude spectrum, stochastic high-frequency modulation, dispersion

Received: 07.12.2021

References

1. Javorskyj, I.M. (2013) Mathematical models and analysis of stochastic oscillations. Lviv, PMI of NAS of Ukraine [in Ukrainian].
2. Javorskyj, I., Mykhailyshyn, V. (1996) Probabilistic models and statistical analysis of stochastic oscillations. Pattern Recogn. Image. Anal., 6(4), 749-763.
3. Javorskyj, I., Yuzefovych, R., Kravets, I., Matsko, I. (2014) Methods of periodically correlated random processes and their generalizations. Cyclostationarity: Theory and Methods. Lecture Notes in Mechanical Engineering. F. Chaari, J. Leskow, A. Sanches-Ramires. New York, Springer Int. Publish. Switzerland, 73-93. https://doi.org/10.1007/978-3-319-04187-2_6
4. Javorskyj, I., Dzeryn, O., Yuzefovych, R. (2019) Analysis of mean function discrete LSM-estimator for biperiodically nonstationary random signals. Math. Model. Comput., 6(1), 44-57. https://doi.org/10.23939/mmc2019.01.044
5. McCormick, A.C., Nandi, A.K. (1998) Cyclostationarity in rotating machine vibrations. Mech. Syst. Signal Process., 12(2), 225-242. https://doi.org/10.1006/mssp.1997.0148
6. Capdessus, C., Sidahmed, M., Lacoume, J.L. (2000) Cyclostationary processes: Application in gear fault early diagnostics. Ibid, 14(3), 371-385. https://doi.org/10.1006/mssp.1999.1260
7. Antoni, J., Bonnardot, F., Raad, A., El Badaoui, M. (2004) Cyclostationary modeling of rotating machine vibration signals. Ibid, 18, 1285-1314. https://doi.org/10.1016/S0888-3270(03)00088-8
8. Antoni, J. (2009) Cyclostationarity by examples. Ibid, 23, 987-1036. https://doi.org/10.1016/j.ymssp.2008.10.010
9. Randall, R.B., Antoni, J. (2011) Rolling element bearing diagnostics - A tutorial. Ibid, 25(2), 485-520. https://doi.org/10.1016/j.ymssp.2010.07.017
10. Zimroz, R., Bartelmus, W. (2009) Gearbox condition estimation using cyclostationary properties of vibration signal. Key Engineering Mater., 413(1), 471-478. https://doi.org/10.4028/www.scientific.net/KEM.413-414.471
11. Hurd, H.L., Miamee, A. (2007) Periodically Correlated Random Sequences: Spectral Theory and Practice. New York, Wiley. https://doi.org/10.1002/9780470182833
12. Javorskyj, I., Kravets, I., Matsko, I., Yuzefovych, R. (2017) Periodically correlated random processes: Application in early diagnostics of mechanical systems. Mech. Syst. Signal Process., 83, 406-438. https://doi.org/10.1016/j.ymssp.2016.06.022
13. Javorskyj, I., Matsko, I., Yuzefovych, R. et al. (2021) Methods of Hidden Periodicity Discovering for Gearbox Fault Detection. Sensors., 21, 6138. https://doi.org/10.3390/s21186138
14. Javorskyj, I., Leśkow, J., Kravets, I. et al. (2011) Linear filtration methods for statistical analysis of periodically correlated random processes - Part II: Harmonic series representation. Signal Process., 91, 2506-2519. https://doi.org/10.1016/j.sigpro.2011.04.031
15. Yuzefovych, R., Javorskyj, I., Matsko, I. et al. (2020) Devices for detection of defects at early stages of their initiation at determination of technical condition of mechanisms. Tekh. Diahnos. and Neruiniv. Kontrol, 4, 8-16 [in Ukrainian]. https://doi.org/10.37434/tdnk2020.04.02
16. Javorskyj, I., Yuzefovych, R., Lychak, O. et al. (2021) Methods and means of early vibrodiagnostics of bearing units of rotary mechanisms. Tekh. Diahnos. and Neruiniv. Kontrol, 2, 30-37. [in Ukrainian] https://doi.org/10.37434/tdnk2021.02.04
17. Javorskyj, I., Yuzefovych, R., Matsko, I., Zakrzewski, Z. (2021) The least square estimation of the basic frequency for periodically non-stationary random signals. Digital Signal Process.: A Review Journal, 103333. https://doi.org/10.1016/j.dsp.2021.103333
18. Javorskyj, I., Yuzefovych, R., Matsko, I., Kurapov, P. (2021) Hilbert transform of a periodically non-stationary random signal: Low-frequency modulation. Ibid, 116, 103113. https://doi.org/10.1016/j.dsp.2021.103113

Advertising in this issue: